Skip to main content

Publications

All publications and citation statistics can be found on Google Scholar:

https://scholar.google.com/citations?hl=en&user=ZtfyzRoAAAAJ

2025

68. Probing the Influence of the Protein Scaffold on Hcluster Reactivity via Gain-of-Function Studies Improved H2 Evolution and O2 Tolerance through Rational Design of [FeFe] Hydrogenase. Cabotaje PR, Sekretareva A, Senger M, Huang P, Walter K, Redman HJ, Croy N, Stripp ST*, Land H*, Berggren G*. J. Am. Chem. Soc. 2025
https://doi.org/10.1021/jacs.4c17364

2024

67. [Fe]-hydrogenase intermediates revealed. Stripp ST*. Nat. catal. 2024; 7: 1264–5
https://doi.org/10.1038/s41929-024-01274-6

66. Oxygen sensitivity of [FeFe]-hydrogenase: a comparative study of active site mimics inside vs. outside the enzyme. Yadav S, Haas R, Boydas EB, Roemelt M, Happe T, Apfel UP*, Stripp ST*. Phys. Chem. Chem. Phys. 2024; 26: 19105–16
https://doi.org/10.1039/D3CP06048A

65. Infrared Spectroscopy Reveals Metal Independent Carbonic Anhydrase Activity in Crotonyl CoA Carboxylase/Reductase. Gomez A, Tinzl M, Stoffel G, Grubmüller H, Erb TJ, Vöhringer-Martinez E*, Stripp ST*. Chem. Sci. 2024; 14: 4960–8
https://doi.org/10.1039/D3SC04208A

2023

64. Synthetic iron-sulfur clusters as hydrogen atom donors. Stripp ST*. MATTER 2023; 6:2560–1
https://doi.org/10.1016/j.matt.2023.07.010

63. The Catalytic Reaction of Cytochrome c Oxidase Probed by In Situ Gas Titrations and FTIR Difference Spectroscopy. Baserga F, Storm J, Schlesinger R, Heberle J, Stripp ST*. BBA – Bioenergetics 2023; 1864: 149000
https://doi.org/10.1016/j.bbabio.2023.149000

62. Structural Basis for Energy Extraction from Atmospheric Hydrogen. Grinter R*, Kropp A, Venugopal H, Senger M, Badley J, Cabotaje P, Jia R, Duan Z, Huang P, Stripp ST, Barlow CK, Belousoff M, Shafaat HS, Cook GM, Schittenhelm RB, Vincent KA, Khalid S, Berggren G, Greening C*. Nature 2023; 615: 541–7
https://doi.org/10.1038/s41586-023-05781-7

61. Molecular basis of the electron bifurcation mechanism in the [FeFe]-hydrogenase complex HydABC. Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, Stripp ST, Jain S, Gamiz-Hernandez AP, Kaila VRI*, Müller V*, Schuller JM*. J. Am. Chem. Soc. 2023; 145: 5696–709
https://doi.org/10.1021/jacs.2c11683

60. A Personal Account on 25 Years of Scientific Literature on [FeFe]-hydrogenase. Sidabras JW* and Stripp ST*. J. Biol. Inorg. Chem. 2023; 28: 355–78
https://doi.org/10.1007/s00775-023-01992-5

59. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway. Duan J*, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T. Angew. Chemie Int. Ed. 2023; 62: e202216903
https://doi.org/10.1002/anie.202216903

58. Bindung von Cyanid an [FeFe]-Hydrogenasen stabilisiert die alternative Konfiguration des Protonentransferpfades. Duan J*, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T. Angew. Chemie 2023; 135: e202216903
https://doi.org/10.1002/ange.202216903

2022

57. Second and Outer Coordination Sphere Effects in Low Valent Metalloenzymes. Stripp ST*, Duffus B, Fourmond V, Leger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe M. Chem. Rev. 2022; 122: 11900–73
https://doi.org/10.1021/acs.chemrev.1c00914

56. An in vitro reconstitution system to monitor iron transfer to the active site during the maturation of [NiFe]-hydrogenase. Soboh B*, Adrian L, and Stripp ST. J. Biol. Chem. 2022; 298: 102291
https://doi.org/10.1016/j.jbc.2022.102291

55. Trapping an Oxidized and Protonated Intermediate of the [FeFe]-Hydrogenase Cofactor under Mildly Reducing Conditions. Senger M*, Duan J, Pavliuka MV, Apfel UP, Haumann M, Stripp ST*. Inorg. Chem. 2022; 61: 10036–42
https://doi.org/10.1021/acs.inorgchem.2c00954

2021

54. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Stripp ST, Oltmanns J, Müller CS, Ehrenberg D, Schlesinger R, Heberle J, Adrian L, Schünemann V, Pierik AJ, Soboh B*. Biochem. J. 2021; 478: 3281–95
https://doi.org/10.1042/BCJ20210224

53. In situ infrared spectroscopy for the analysis of gas-processing metalloenzymes. Stripp ST*. ACS Catal. 2021; 11: 7845–62
https://doi.org/10.1021/acscatal.1c00218

52. Two ligand-binding sites in CO-reducing V Nitrogenase reveal a general mechanistic principle. Rohde M, Laun K, Zebger I, Stripp ST, Einsle O*. Science Adv. 2021; 7: eabg4474
https://doi.org/10.1126/sciadv.abg4474

51. Quantification of Local Electric Field Changes at the Active Site of Cytochrome c Oxidase by FTIR Spectroelectrochemical Titrations. Baserga F, Dragelj J, Kozuch J, Mohrmann H, Knapp EW, Stripp ST, Heberle J*. Front. Chem. 2021; 9: 669452
https://doi.org/10.3389/fchem.2021.669452

50. Following electroenzymatic hydrogen production by rotating ring disk electrochemistry and mass spectrometry. Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD*. Angew. Chemie Int. Ed. 2021; 60 (18): 10001–6
https://doi.org/10.1002/anie.202100863

49. Untersuchung elektroenzymatischer H2‐Produktion mithilfe von Rotierende‐Ring-Scheiben‐Elektrochemie und Massenspektrometrie. Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD*. Angew. Chemie 2021; 133 (18): 10089–94
https://doi.org/10.1002/ange.202100863

48. Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Laun K, Baranova I, Duan J, Kertess L, Wittkamp F, Apfel UP, Happe T, Senger M*, Stripp ST*. Dalton Trans. 2021; 5 (10): 3641–50
https://doi.org/10.1039/D1DT00110H

47. Bands from Bonds. Stripp ST*. Nat. Rev. Chem. 2021; 5: 146–7
https://doi.org/10.1038/s41570-021-00256-7

46. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Hulin T, Hirota S*, Stripp ST*. Acc. Chem. Res. 2021; 54 (1): 232–41
https://doi.org/10.1021/acs.accounts.0c00651

45. Ligand effects on structural, protophilic and reductive features of stannylated dinuclear iron dithiolato complexes. Abul-Futouh H*, Almazahreh LR, Abaalkhail SJ, Görls H, Stripp ST, Weigand W*. New. J. Chem. 2021; 45: 36–44
https://doi.org/10.1039/D0NJ04790B

2020

44. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase. Stripp ST, Mebs S, Haumann M*. Inorg. Chem. 2020; 59 (22): 16474–88
https://doi.org/10.1021/acs.inorgchem.0c02316

43. Characterization of a sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Land H, Sekretaryova AL, Huang P, Redman HJ, Németh B, Polidori N, Mészáros L, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 12789–801
https://doi.org/10.1039/D0SC03319G

42. [FeFe]-Hydrogenase Maturation: H-cluster Assembly Intermediates Tracked by Electron Paramagnetic Resonance, Infrared, and X-Ray Absorption Spectroscopy. Németh B, Senger M, Redman HJ, Ceccaldi P, Broderick J, Magnuson A, Stripp ST, Haumann M, Berggren G*. J. Biol. Inorg. Chem. 2020; 25: 777–88
https://doi.org/10.1007/s00775-020-01799-8

41. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. Land H, Senger M, Berggren G.*, Stripp ST*. ACS Catal. 2020; 10 (13): 7069–86
https://doi.org/10.1021/acscatal.0c01614

40. Spectroscopic Investigations under in vivo Conditions Reveal the Complex Metal Hydride Chemistry of [FeFe]-hydrogenase. Mészáros LS, Ceccaldi P, Lorenzi M, Redman HJ, Pfitzner E, Heberle J, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 4608–17
https://doi.org/10.1039/D0SC00512F

2009 - 2019

Please find older publications here