Publikationen
Alle Publikationen und statistische Daten finden sie auf Google Scholar:
https://scholar.google.com/citations?hl=en&user=ZtfyzRoAAAAJ
2025
69. Stabilization of a Terminal Hydride through Regioselective Protonation in a Diiron Complex Inspired by [FeFe]-Hydrogenase. Chatelain L*, Stripp ST, Schollhammer P. Chem. Eur. J.
https://doi.org/10.1002/chem.202404353
68. Probing the Influence of the Protein Scaffold on H‑cluster Reactivity via Gain-of-Function Studies Improved H2 Evolution and O2 Tolerance through Rational Design of [FeFe] Hydrogenase. Cabotaje PR, Sekretareva A, Senger M, Huang P, Walter K, Redman HJ, Croy N, Stripp ST*, Land H*, Berggren G*.J. Am. Chem. Soc. 2025; 147: 4654–66
https://doi.org/10.1021/jacs.4c17364
2024
67. [Fe]-hydrogenase intermediates revealed. Stripp ST*. Nat. catal. 2024; 7: 1264–5
https://doi.org/10.1038/s41929-024-01274-6
66. Oxygen sensitivity of [FeFe]-hydrogenase: a comparative study of active site mimics inside vs. outside the enzyme. Yadav S, Haas R, Boydas EB, Roemelt M, Happe T, Apfel UP*, Stripp ST*. Phys. Chem. Chem. Phys. 2024; 26: 19105–16
https://doi.org/10.1039/D3CP06048A
65. Infrared Spectroscopy Reveals Metal Independent Carbonic Anhydrase Activity in Crotonyl CoA Carboxylase/Reductase. Gomez A, Tinzl M, Stoffel G, Grubmüller H, Erb TJ, Vöhringer-Martinez E*, Stripp ST*. Chem. Sci. 2024; 14: 4960–8
https://doi.org/10.1039/D3SC04208A
2023
64. Synthetic iron-sulfur clusters as hydrogen atom donors. Stripp ST*. MATTER 2023; 6:2560–1
https://doi.org/10.1016/j.matt.2023.07.010
63. The Catalytic Reaction of Cytochrome c Oxidase Probed by In Situ Gas Titrations and FTIR Difference Spectroscopy. Baserga F, Storm J, Schlesinger R, Heberle J, Stripp ST*. BBA – Bioenergetics 2023; 1864: 149000
https://doi.org/10.1016/j.bbabio.2023.149000
62. Structural Basis for Energy Extraction from Atmospheric Hydrogen. Grinter R*, Kropp A, Venugopal H, Senger M, Badley J, Cabotaje P, Jia R, Duan Z, Huang P, Stripp ST, Barlow CK, Belousoff M, Shafaat HS, Cook GM, Schittenhelm RB, Vincent KA, Khalid S, Berggren G, Greening C*. Nature 2023; 615: 541–7
https://doi.org/10.1038/s41586-023-05781-7
61. Molecular basis of the electron bifurcation mechanism in the [FeFe]-hydrogenase complex HydABC. Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, Stripp ST, Jain S, Gamiz-Hernandez AP, Kaila VRI*, Müller V*, Schuller JM*. J. Am. Chem. Soc. 2023; 145: 5696–709
https://doi.org/10.1021/jacs.2c11683
60. A Personal Account on 25 Years of Scientific Literature on [FeFe]-hydrogenase. Sidabras JW* and Stripp ST*. J. Biol. Inorg. Chem. 2023; 28: 355–78
https://doi.org/10.1007/s00775-023-01992-5
59. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway. Duan J*, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T. Angew. Chemie Int. Ed. 2023; 62: e202216903
https://doi.org/10.1002/anie.202216903
58. Bindung von Cyanid an [FeFe]-Hydrogenasen stabilisiert die alternative Konfiguration des Protonentransferpfades. Duan J*, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T. Angew. Chemie 2023; 135: e202216903
https://doi.org/10.1002/ange.202216903
2022
57. Second and Outer Coordination Sphere Effects in Low Valent Metalloenzymes. Stripp ST*, Duffus B, Fourmond V, Leger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe M. Chem. Rev. 2022; 122: 11900–73
https://doi.org/10.1021/acs.chemrev.1c00914
56. An in vitro reconstitution system to monitor iron transfer to the active site during the maturation of [NiFe]-hydrogenase. Soboh B*, Adrian L, and Stripp ST. J. Biol. Chem. 2022; 298: 102291
https://doi.org/10.1016/j.jbc.2022.102291
55. Trapping an Oxidized and Protonated Intermediate of the [FeFe]-Hydrogenase Cofactor under Mildly Reducing Conditions. Senger M*, Duan J, Pavliuka MV, Apfel UP, Haumann M, Stripp ST*. Inorg. Chem. 2022; 61: 10036–42
https://doi.org/10.1021/acs.inorgchem.2c00954
2021
54. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Stripp ST, Oltmanns J, Müller CS, Ehrenberg D, Schlesinger R, Heberle J, Adrian L, Schünemann V, Pierik AJ, Soboh B*. Biochem. J. 2021; 478: 3281–95
https://doi.org/10.1042/BCJ20210224
53. In situ infrared spectroscopy for the analysis of gas-processing metalloenzymes. Stripp ST*. ACS Catal. 2021; 11: 7845–62
https://doi.org/10.1021/acscatal.1c00218
52. Two ligand-binding sites in CO-reducing V Nitrogenase reveal a general mechanistic principle. Rohde M, Laun K, Zebger I, Stripp ST, Einsle O*. Science Adv. 2021; 7: eabg4474
https://doi.org/10.1126/sciadv.abg4474
51. Quantification of Local Electric Field Changes at the Active Site of Cytochrome c Oxidase by FTIR Spectroelectrochemical Titrations. Baserga F, Dragelj J, Kozuch J, Mohrmann H, Knapp EW, Stripp ST, Heberle J*. Front. Chem. 2021; 9: 669452
https://doi.org/10.3389/fchem.2021.669452
50. Following electroenzymatic hydrogen production by rotating ring disk electrochemistry and mass spectrometry. Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD*. Angew. Chemie Int. Ed. 2021; 60 (18): 10001–6
https://doi.org/10.1002/anie.202100863
49. Untersuchung elektroenzymatischer H2‐Produktion mithilfe von Rotierende‐Ring-Scheiben‐Elektrochemie und Massenspektrometrie. Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD*. Angew. Chemie 2021; 133 (18): 10089–94
https://doi.org/10.1002/ange.202100863
48. Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Laun K, Baranova I, Duan J, Kertess L, Wittkamp F, Apfel UP, Happe T, Senger M*, Stripp ST*. Dalton Trans. 2021; 5 (10): 3641–50
https://doi.org/10.1039/D1DT00110H
47. Bands from Bonds. Stripp ST*. Nat. Rev. Chem. 2021; 5: 146–7
https://doi.org/10.1038/s41570-021-00256-7
46. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Hulin T, Hirota S*, Stripp ST*. Acc. Chem. Res. 2021; 54 (1): 232–41
https://doi.org/10.1021/acs.accounts.0c00651
45. Ligand effects on structural, protophilic and reductive features of stannylated dinuclear iron dithiolato complexes. Abul-Futouh H*, Almazahreh LR, Abaalkhail SJ, Görls H, Stripp ST, Weigand W*. New. J. Chem. 2021; 45: 36–44
https://doi.org/10.1039/D0NJ04790B
2020
44. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase. Stripp ST, Mebs S, Haumann M*. Inorg. Chem. 2020; 59 (22): 16474–88
https://doi.org/10.1021/acs.inorgchem.0c02316
43. Characterization of a sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Land H, Sekretaryova AL, Huang P, Redman HJ, Németh B, Polidori N, Mészáros L, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 12789–801
https://doi.org/10.1039/D0SC03319G
42. [FeFe]-Hydrogenase Maturation: H-cluster Assembly Intermediates Tracked by Electron Paramagnetic Resonance, Infrared, and X-Ray Absorption Spectroscopy. Németh B, Senger M, Redman HJ, Ceccaldi P, Broderick J, Magnuson A, Stripp ST, Haumann M, Berggren G*. J. Biol. Inorg. Chem. 2020; 25: 777–88
https://doi.org/10.1007/s00775-020-01799-8
41. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. Land H, Senger M, Berggren G.*, Stripp ST*. ACS Catal. 2020; 10 (13): 7069–86
https://doi.org/10.1021/acscatal.0c01614
40. Spectroscopic Investigations under in vivo Conditions Reveal the Complex Metal Hydride Chemistry of [FeFe]-hydrogenase. Mészáros LS, Ceccaldi P, Lorenzi M, Redman HJ, Pfitzner E, Heberle J, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 4608–17
https://doi.org/10.1039/D0SC00512F
2009 - 2019
Ältere Publikationen finden Sie hier