Potsdamer Astronomen haben, gemeinsam mit Kollegen aus Belgien und den USA, mit dem ESA-Satelliten XMM-Newton Röntgenpulse eines einzigartigen Sternes entdeckt. Mit verblüffender Regelmäßigkeit und über einen Zeitraum von fünf Stunden steigt die Strahlungsaktivität des Sterns Xi1 im Sternbild Großer Hund im Röntgenlicht an und fällt dann wieder ab. Solche Pulsationen sind nie zuvor bei einem normalen Stern beobachtet worden. Die Wissenschaftler sind nun auf der Suche nach einer möglichen physikalischen Erklärung für seine Eigenschaften. Ihre Beobachtungen wurden jetzt in Nature Communications publiziert.
Der besagte Stern Xi1 zog bereits in der Vergangenheit die Aufmerksamkeit der Forscher auf sich. So entdeckte Swetlana Hubrig vom Leibniz-Institut für Astrophysik Potsdam (AIP), dass der Stern ein außergewöhnlich starkes Magnetfeld besitzt, 5000 Mal stärker als das Magnetfeld der Sonne. Er ist etwa 1500 Lichtjahre von uns entfernt und kann dennoch mit bloßem Auge ausgemacht werden. Grund dafür ist seine große Helligkeit – verglichen mit unserer Sonne ist Xi1 an seiner Oberfläche fünfmal heißer, während er etwa die fünfzehnfache Masse besitzt.
Nicht nur im optischen Licht, auch im Röntgenbereich scheint Xi1 hell auf. Lidia Oskinova von der Universität Potsdam (UP) hat die Beobachtungskampagne mit dem Röntgenteleskop XMM-Newton geleitet. Die Temperatur des Sterns reicht nicht aus, um im Röntgenbereich zu strahlen. Daher glauben die Forscher, dass die Röntgenstrahlung durch Schockwellen im Magnetfeld des Sterns entsteht. Das Zusammenspiel dieses Magnetfelds mit dem sogenannten Sternwind zu verstehen, ist das Spezialgebiet von Oskinovas Kollegen Helge Todt und Wolf-Rainer Hamann (UP), beide Koautoren der nun veröffentlichten Studie.
Einzig Neutronensterne und Weiße Zwerge waren bisher dafür bekannt, Röntgenpulse auszusenden. Die Mechanismen, die in solchen Objekten aus superdichter Materie wirken, sind allerdings nicht auf Xi1 übertragbar, der nur aus Materie normaler Dichte besteht. Die Forscher hofften daher, einen Hinweis auf den Ursprung der beobachteten Pulsationen aus der Tatsache ziehen zu können, dass der Stern auch im optischen Licht pulsiert. Diese optische Veränderlichkeit ist seit etwa einem Jahrhundert bekannt; ihre etwa fünfstündige Periode ist seitdem sekundengenau stabil.
Das Potsdamer Team hat die optischen Daten mit den neuen Röntgenbeobachtungen abgeglichen und tatsächlich eine Übereinstimmung gefunden. Damit können die Astronomen zeigen, dass die Prozesse im Sternwind und im Sterninneren viel enger miteinander verbunden sind als bislang angenommen. Von der bestehenden und zukünftigen Zusammenarbeit des AIP und der UP in Beobachtungskampagnen und zur Entwicklung spezieller Modelle für Sternwinde und Magnetosphären erhoffen sich die Forscher so auch die endgültige Lösung des Rätsels um den neu entdeckten stellaren Röntgenpulsar.
Kontakt: Dr. Lidia Oskinova, Universität Potsdam (UP), Institut für Physik und Astronomie
Telefon: 0331 977-5910
E-Mail: lidauastro.physik.uni-potsdampde
Dr. Swetlana Hubrig, Leibniz-Institut für Astrophysik Potsdam (AIP)
Telefon: 0331 7499-225
E-Mail: shubriguaippde
Dr. Gabriele Schönherr, Leibniz-Institut für Astrophysik Potsdam (AIP)
Telefon: 0331 7499-382
E-Mail: presseuaippde
Internet:http://www.nature.com/ncomms/2014/140603/ncomms5024/full/ncomms5024.html
Medieninformation 03-06-2014 / Nr. 091
Dr. Barbara Eckardt (UP)
Dr. Gabriele Schönherr (AIP)
Gemeinsame Meldung der Universität Potsdam und des Leibniz-Instituts für Astrophysik Potsdam
Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-1665
Fax: +49 331 977-1130
E-Mail: presseuuni-potsdampde
Internet: www.uni-potsdam.de/presse
Online gestellt: Edda Sattler