Zum Hauptinhalt springen

Maximale Effizienz, minimaler Einsatz – Dünnschichtsolarzelle auf Siliziumbasis nutzt mit organischer Zusatzschicht auch infrarotes Licht

Die neue hybride Solarzelle ist aus zwei extrem dünnen amorphen Siliziumschichten sowie einer organischen Schicht aufgebaut, zusammen sind ihre aktiven Schichten nicht dicker als einen Mikrometer. Trotz des minimalen Materialeinsatzes erreicht die Hybridzelle damit einen Rekord-Wirkungsgrad von 11,7 %. Die organische Schicht besteht aus so genannten „Fußballmolekülen“ oder Fullerenen, die mit halbleitenden Polymeren gemischt sind. Diese Schicht wandelt auch noch das Infrarotlicht in elektrische Energie um, das in den Siliziumschichten nicht genutzt werden kann. Die komplementäre Verbindung organischer und anorganischer Materialien in einer Stapelzelle ist eine vielversprechende Option für Solarzellen der Zukunft. Die Zelle wurde im Rahmen des BMBF-Programms „Spitzenforschung und Innovation  in den Neuen Ländern“ gemeinsam von Teams der Universität Potsdam und des Helmholtz-Zentrums Berlin (HZB) entwickelt, die ihre Arbeit nun im renommierten Fachmagazin „Advanced Materials“ publiziert haben.

Grundbaustein der Zelle ist eine sehr dünne Schicht aus amorphem Silizium, die mit Wasserstoff durchsetzt ist (a-Si:H). Solche einfachen Dünnschicht-Solarzellen erreichen nur geringe Wirkungsgrade und nutzen lediglich Photonen im blauen und grünen Bereich des Lichtspektrums. Steffen Roland, Doktorand aus der Gruppe von Professor Dr. Dieter Neher an der Universität Potsdam, und Sebastian Neubert, Doktorand aus der Gruppe von Professor Dr. Rutger Schlatmann vom Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik (PVcomB) des HZB, haben diese Schicht zunächst um eine weitere a-Si:H-Schicht zu einer Tandemzelle erweitert und zusätzlich eine organische Schicht aufgebracht, die es ermöglicht, auch infrarotes Licht in elektrische Energie umzuwandeln. So konnten sie den Wirkungsgrad der Triplezelle  auf über 11 % steigern. Gleichzeitig ist diese Solarzellenarchitektur deutlich beständiger gegenüber Alterungseffekten. Dieser Erfolg zeigt eindrucksvoll, wie die enge Zusammenarbeit von Doktoranden aus unterschiedlichen Fachrichtungen (organische Halbleiter und  anorganische Halbleiter) zu neuen Devicestrukturen mit verbesserten Eigenschaften führt.
„Die Zelle lässt sich einfach mit etablierten Dünnschichttechnologien herstellen, die industriegängig und auch für die Produktion von großen Folien geeignet sind“, erklärt Rutger Schlatmann. Und Dieter Neher fügt an: „Die hohen Absorptionskoeffizienten der a-Si:H-Schichten und die Eigenschaften der organischen Schicht ermöglichen eine aktive Schichtstruktur, die nicht dicker als einen Mikrometer ist, das ist maximale Effizienz mit minimalem Einsatz!“.

Abbildung: Eine schematische Darstellung der Zell-Architektur: die a-Si:H-Unterzellen werden auf einem dünnen Zinkoxid (AZO)-Film abgeschieden, der als transparenter Frontkontakt fungiert. Als Rückkontakt dient eine Schicht aus Indium-Zink-Oxid (ITO). Die organische Sub-Zelle besitzt einen Frontkontakt aus einem leitfähigem Polymermaterial (PEDOT) und einen metallischen Rückkontakt.

Article first published online 7 January 2015 in Advanced Materials: Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency, DOI: 10.1002/adma.201404698

Kontakt: Prof. Dieter Neher, Universität Potsdam
Telefon: 0331 977-1265
E-Mail: neheruni-potsdamde

Prof. Rutger Schlatmann, PVcomB des HZB
Telefon: 030 8062-15680
E-Mail: rutger.schlatmannpvcombde

Medieninformation 12-01-2015 / Nr. 001
Dr. Antonia Rötger (HZB), Antje Horn-Conrad (UP)

Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-1665
Fax: +49 331 977-1130
E-Mail: presseuni-potsdamde
Internet: www.uni-potsdam.de/presse

Online gestellt: Edda Sattler

Veröffentlicht

Sachgebiet