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"You can never know everything, and part of what
you know is always wrong. Perhaps even the most
important part. A portion of wisdom lies in knowing
that. A portion of courage lies in going on anyway."

— Robert Jordan






Abstract

This thesis investigates and compares the lattice response of 40 nm rare-earth thin-
film heterostructures upon femtosecond optical excitation at temperatures above
and below the magnetic ordering temperatures in Gd, Tb and Dy. Ultrafast X-ray
diffraction at our laboratory-based plasma X-ray source is employed, which reveals
the strain dynamics on a picosecond timescale, as well as thermal expansion and
heat conductivity on a nanosecond timescale. In the paramagnetic phase above
the magnetic ordering temperature, a conventional metallic expansive response
is observed, as the excitation energy is deposited in the electronic and phononic
subsystem. Below the magnetic ordering temperature, the coupling between the
magnetic subsystem and the lattice leads to a competition between the expansive
stress from electrons and phonons and the contractive stress from spin excitations.
This results in negative thermal expansion, observed in Gd, Tb, and Dy below
their respective magnetic ordering temperatures, which was revealed using X-ray
diffraction at the KMC-3 XPP endstation at BESSY II. This magnetostrictive effect
can be attributed to the indirect RKKY interaction, which occurs in Gd, Tb and Dy.

To separate the stress contributions of the three subsystems on an ultrafast timescale,
the thermal lattice expansion and heat capacities of Gd, Tb, and Dy in equilibrium in
terms of an extended Griineisen model are investigated. The Griineisen parameters
of the phononic and magnetic subsystems in terms of a three-energy-model were
determined, which allows the extraction of the time-dependent energy distribution
and driving stresses. The results are in agreement with the modelled strain response
via a linear-chain-model in the paramagnetic phase with a one-energy-model.
However, the magnetic Griineisen parameters of Gd and Tb turned out to be
temperature-dependent, which reveals the limitations of the Griineisen modelling.
This temperature-dependence yields intriguing effects, as for the Tb layer, an
ultrafast invar behaviour of the strain response has been observed under certain
excitation conditions. The delayed laser-induced contraction of Gd indicates a
demagnetisation on a timescale of 50 ps, which is slower compared to Tb and Dy,
which have a demagnetisation timescale of approximately 8 ps and 20 ps respectively.
These findings align closely with recent femtosecond X-ray magnetic circular
dichroism (XMCD) results.







Kurzdarstellung

In dieser Arbeit wird das Verhalten von 40 nm diinnen Schichten Seltener Erden
nach einer optischen Anregung mit Femtosekunden-Laserpulsen oberhalb und
unterhalb der magnetischen Ordnungstemperaturen in Gd, Tb und Dy betrachtet.
Mit Hilfe ultraschneller Rontgenbeugung an einer Laser-getriebenen Plasmaront-
genquelle lassen sich die Ausdehnungsdynamiken im Pikosekundenbereich, sowie
die thermische Ausdehnung und Warmeleitfahigkeit im Nanosekundenbereich
untersuchen. In der paramagnetischen Phase oberhalb der magnetischen Ordnungs-
temperatur wird eine konventionelle metallische Expansion beobachtet, da die
Anregungsenergie dem elektronischen und phononischen Teilsystem zugefiihrt
wird. Die Kopplung des magnetischen Teilsystems mit dem Gitter fithrt unter-
halb der magnetischen Ordnungstemperatur zu einem Entgegenwirken der durch
Elektronen und Phononen getriebenen Gitterausdehnung. Daraus resultiert eine ne-
gative thermische Ausdehnung, die in Gd, Tb und Dy unterhalb ihrer magnetischen
Ordnungstemperatur mittels Rontgenbeugung am BESSY II nachgewiesen wur-
de. Dieser magnetostriktive Effekt kann auf die indirekte RKKY-Wechselwirkung
zuriickgefithrt werden, die in Gd, Tb und Dy auftritt.

Um die Druckbeitrage der drei Teilsysteme auf einer ultraschnellen Zeitskala zu
separieren, werden die thermische Ausdehnung und die Warmekapazititen von Gd,
Tb und Dy im Gleichgewicht im Rahmen eines erweiterten Griineisenmodells unter-
sucht. Die Griineisenparameter der phononischen und magnetischen Teilsysteme
wurden im Rahmen eines Drei-Energie-Modells bestimmt, mit dem die zeitabhan-
gige Energieverteilung und die treibenden Driicke separiert werden konnen. Die
Ergebnisse stimmen mit der simulierten Ausdehnung in der paramagnetischen
Phase unter Verwendung eines Ein-Energie-Modells tiberein. Allerdings erwiesen
sich die magnetischen Griineisenparameter von Gd und Tb als temperaturabhéngig,
was die Grenzen der Griineisenmodellierung aufzeigt. Diese Temperaturabhén-
gigkeit fiihrt zu verbliffenden Effekten, da fiir die Tb-Schicht unter bestimmten
Anregungsbedingungen ein ultraschnelles Invar-Verhalten der Ausdehnung beob-
achtet wurde. Die verzogerte laserinduzierte Kontraktion von Gd deutet auf eine
Demagnetisierung auf einer Zeitskala von 50 ps hin, was im Vergleich zu Tb und
Dy, die Demagnetisierungszeitskalen von ungefahr 8 ps bzw. 20 ps aufweisen, lang-
samer ist. Dies steht im Einklang mit durch XMCD gewonnenen zeitgendssischen
Ergebnissen.
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Abbreviations

Table 1: This table contains all abbreviations used in this thesis in alphabetical order.

Abbreviation Meaning

AFM
Al,O4
Dy
FM

fs

Gd

Ho
LASER
LTE
Lu

NTE
PM

ps
PXS
RKKY
RSM
RSS
Tb
Ti:Sa
UXRD
XMCD
XRD

helical antiferromagnetic
sapphire

dysprosium

ferromagnetic

femtosecond

gadolinium

holmium

light amplification by stimulated emission of radiation
linear thermal expansion
lutetium

niobium

negative thermal expansion
paramagnetic

picoseconds

plasma X-ray source
Ruderman-Kittel-Kasuya-Yosida
reciprocal space map

reciprocal space slice

terbium

titanium-sapphire

ultrafast X-ray diffraction
X-ray magnetic circular dichroism
X-ray diffraction

yttrium
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1 Introduction

The concept of the atom, as the smallest indivisible unit of matter, traces back to the
ancient Greeks. Philosophers such as Democritus theorised that everything in the
universe was composed of these fundamental building blocks. Although these ideas
lacked the empirical evidence to prove their existence, they laid the foundation
for centuries of scientific investigation. Over 2400 years later, our understanding
of atomic particles has led to groundbreaking technological advancements. The
study of the properties of various elements gained crucial insights into electronic
behaviour, lattice vibrations, and magnetism, which drive modern technology.
One of them was the discovery of the giant magnetoresistance effect by Peter
Griinberg and Albert Fert, for which they were awarded the Nobel Prize in Physics
in 2007. Their pioneering work in this field revolutionised data storage technology,
which lays the foundation for highly efficient read-write heads in hard disk drives.
The application of the giant magnetoresistance effect enabled the development of
gigabyte-scale hard drives, which are now an essential part of modern life (Gross
& Marx [1]). Another recent breakthrough in data storage is the technique of heat
assisted magnetic recording (HAMR), which uses lasers to briefly heat the magnetic
data storage medium. This allows for data storage with higher density without
the sacrifice of stability or speed. Data storage technologies often face a trilemma:
balancing stability, speed, and high data density. The enhancement of one aspect
may come at the cost of another. For example, increasing data density can lead to
reduced stability, while improving speed may affect the long term data preservation
(Wood [2]).

Our research group has conducted numerous experiments on ultrafast magneto-
striction, primarily in dysprosium (Dy) and holmium (Ho) ([3-6]), while other
research groups have explored magnetostriction in different materials ([7-10]).
These observed ultrafast processes are particularly relevant for the increasingly
fast-paced demands of data processing. The goal of this thesis is to analyse the
rare-earth metals gadolinium (Gd) and terbium (Tb) and compare their ultrafast
magnetostriction to Dy. Different demagnetisation time-scales of those materials
have already been observed ([11-13]).

My thesis is divided into two parts. Part I covers the fundamentals of magnetostric-
tion in chapter 2, such as the RKKY interaction and the three-energy-model, and the




Chapter 1 Introduction

underlying theory to understand ultrafast X-ray diffraction (UXRD) in chapter 3.
UXRD is the utilised technique to resolve the motion of atoms in a crystalline
arrangement, which our research group has optimised (Zamponi et al. [14] and
Schick et al. [15]). Part II of my thesis focuses on the experimental results. The
temperature-resolved experiments of the Gd, Tb and Dy thin-films, carried out at
the KMC-3 XPP endstation at BESSY II, are presented in chapter 4, with the result
of extracted Griineisen parameters for Gd, Tb and Dy. Time-resolved experiments
at the same materials were conducted at our laboratory based plasma X-ray source,
which is introduced in chapter 5. I showed that Gd, Tb and Dy all exhibit negative
thermal expansion below their magnetic ordering temperature.
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2 Models of magnetostriction

Spontaneous magnetostriction is the expansion or contraction of the crystal lattice as
a function of the magnetisation. This chapter will introduce the rare-earth materials,
which are subject to test in this thesis, as well as the concepts of magnetostriction. The
underlying models, such as the three-energy-model, which apply to these systems will
also be covered.

2.1 Magnetostriction in rare-earth metals

Rare-earth metals are known to exhibit giant magnetostriction ([3-6]). The three
samples analysed in this thesis are depicted in figure 2.1. Those three hetero-
structures are related, as they are structurally the same. Only the 40 nm thin-film
rare-earth layer differs in the rare-earth element: gadolinium (Gd), terbium (Tb), or
dysprosium (Dy). The samples are therefore labelled accordingly as Gd sample, Tb
sample, and Dy sample. Each sample has a 10 nm yttrium (Y) capping layer on top,
followed by the respective rare-earth layer. Below that, a 50 nm niobium (Nb) layer
is present, which is located on top of a 1 mm thick sapphire (Al,O3) substrate. The
Yttrium layer on top prevents oxidation of the rare-earth layer, while the Nb layer
functions as a buffer layer during the growth and as a detection layer for ultrafast
strain, as described in Mattern et al. [5].

The magnetostriction of the rare-earth layer can be measured as a function of the
temperature and as a function of the time-delay between the pump and the probe
pulse, which is described in section 5.1. During the quasi-static measurements, the
change of the distance between the rare-earth atoms along the c-axis is recorded
temperature-dependently. The top of each sample is the Y layer, which corres-
ponds to the direction from which the samples are excited by a laser pulse when
time-resolved measurements in terms of a pump-probe experiment are conducted
(section 5.1). Two exemplary experimental results of magnetostriction are illus-
trated in figure 2.2. Figure 2.2 (a) depicts the temperature-resolved distance of the
lattice planes, which corresponds to the c-axis of the hexagonal crystal structure.
The usually expected behaviour of linear thermal expansion (LTE) is interrupted
between roughly 150K and 250 K, which is due to magnetostriction. Figure 2.2 (b)
shows the time-resolved development of the c-axis after laser excitation. For a
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sapphire
substrate

sapphire
substrate

sapphire
substrate

Figure 2.1: These samples were manufactured by Karine Dumesnil, Institut Jean Lamour,
Université Lorraine, Nancy. (a) shows the structure of the Gd sample, (b) depicts the
structure of the Tb sample, and (c) illustrates the structure of the Dy sample.

selected starting temperature in the ferromagnetic (FM) phase, laser-induced spon-
taneous magnetostriction can be observed as an ultrafast contraction along the
c-axis. This is not the case if the starting temperature lies in the paramagnetic (PM)

phase.
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Figure 2.2: (a) The interrupted thermal expansion of the c-axis between 150K and 250K
is depicted temperature-resolved. (b) The time-resolved change of the c-axis depends on
whether Tb is paramagnetic or ferromagnetic.



Magnetostriction in rare-earth metals

In general, a distinction is made between different types of magnetostriction. If
magnetostriction occurs due to a change in temperature, e.g. upon laser excitation,
this is named spontaneous magnetostriction or just magnetostriction. This is the type
of magnetostriction mainly discussed in this thesis. When an external magnetic
field is applied to a sample, that can lead to forced magnetostriction, which is another
form of magnetostriction. This will be mentioned briefly in chapter 6. The main
mechanism of magnetostriction in rare earths is exchange striction mediated by
an indirect RKKY interaction, as presented in section 2.1. Another mechanism of
magnetostriction is anisotropy striction, presented in section 2.1, which is not the
main mechanism in rare-earth metals but can possibly still explain why various
rare earths exhibit different magnetostrictive behaviours.

RKKY exchange interaction

As the magnetic moments of the rare earths are carried by the 4f-electrons whose
orbitals have practically no overlap, an indirect mechanism of exchange is necessary,
which then mediates the exchange striction. This indirect interaction is entitled
as RKKY interaction, named after Malvin Avram Ruderman, Charles Kittel, Tadao
Kasuya and Kei Yosida. The coupling is realised via conduction band electrons, as
the magnetic moments orient the spin of the conduction band electrons, which
in turn orient the magnetic moments of the neighbouring ions (Hunklinger [16]).
According to Skomski [17], the RKKY interaction is proportional to

sin (2kpr) — 2kpr cos (2kgr)
(2kpr)? ’
where kr is the Fermi vector, r is the distance between neighbouring ions and J is

the exchange coeflicient. In the Heisenberg model, according to Gross & Marx [1],
the spin-dependent Hamiltonian H can be expressed as:

J(r) ~

(2.1)

7‘{:— Z ]ij%si'sj- (2.2)
J#ELI>]

The distance-dependent exchange coefficient J(r) is illustrated in figure 2.3. This
implies that the state of the spin system is directly connected to the distance
of the ions, which can lead to magnetostrictive effects. If J(r) > 0, then the
vectors S; and § ;i of the neighbouring spins i, j are aligned parallel, which leads to
a ferromagnetic material. If J < 0, the vectors are aligned antiparallel, which leads
to an antiferromagnetic material. In some cases, the material becomes a helical
antiferromagnet, which will in the following be referred to as AFM. This is the

Section 2.1
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Figure 2.3: The amplitude of the RKKY interaction is distance-dependent. +x~> depicts
the enveloping function with x = 2kpr.

case for Dy, as illustrated in figure 2.4. The relation between the conventional
antiferromagnetic structure and the helical antiferromagnetic structure becomes
evident in the two-dimensional projection of the spin spiral, which is also shown
in figure 2.4.

Anisotropy striction

According to Engdahl [19], 4f-electrons have a strong spin-orbit coupling, which
means that the spin of a 4f-electron is firmly attached to the corresponding elec-
tronic cloud. This spin moment is illustrated as m in figure 2.5. In a crystal
lattice at rest, the magnetic moment points into a certain direction, defined by
the neighbouring positively charged nuclei. This tendency of the magnetic mo-
ment to point into a preferred direction, because the Coulomb forces from neigh-
bouring ions act on the non-spherical orbital hosting the spin, is called mag-
netocrystalline anisotropy. If the distance between these nuclei changes, con-
sequently the electron orbital may change and thus tilt the direction the mag-
netic moment points to. This is also true in reverse, as the application of an
external magnetic field can rotate the magnetic moment and consequently the
electron orbit, which would therefore change the distance between the nuclei.
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Figure 2.4: Between the Curie and the Néel temperature, the structure of Dy is helical
antiferromagnetic. The periodicity of the spin spiral with the length s does not necessarily
need to resemble the periodicity of the lattice. Source: Ott [18]
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This invoked change of the distance 1
of the lattice planes is called aniso- @
tropy striction. The model of aniso-

tropy striction only predicts an im-
pact on the lattice, if the electron or-
bital that carries the magnetic mo-
ment is non-spherical. In Gd, the 4f-
orbital is exactly half filled as shown
in table 2.1, which leads to a spher-
ical orbital form (Gross & Marx [1]).
This illustrates nicely why aniso-
tropy striction is likely not the main

reason for magnetostriction in rare- @
earth materials, because the other
rare earths exhibit spontaneous mag- !

netostriction with a similar strength

) ) Figure 2.5: The electronic orbital rotates due
as observed in Gd. In these materi-

to an external magnetic field, which changes

als, the magnetic moments are carried e position of the positive nuclei. Source:
by 4f-electrons, whose wave function  Engdahl [19]

overlap is small due to their proxim-

ity to the nucleus (Hunklinger [16]). This is true for the elements Gd, Tb and
Dy, as they are neighbours in the periodic table of elements. Their electronic
configurations are therefore similar, as depicted in table 2.1.

Table 2.1: This table contains the electronic configuration of Gd, Tb and Dy according to
Ott [18] and the angular momenta S4f, Lyr and J4¢ of corresponding the 4f-orbital. In Gross
& Marx [1], this (5d6s)® hybridisation is not used.

element configuration Sy Ly Jyr

Gd [Xe]af’(5d6s)®> 7/2 0  7/2
Tb [Xe]4ff(5d6s)> 3 3 6
Dy [Xel]4f’(5d6s)>  5/2 5  15/2

2.2 Lattice dynamics

This section 2.2 will introduce the three-energy-model (3EM) in section 2.2.1, which
leads to an extended Griineisen model and will be applied to the linear-chain-model

10



Lattice dynamics

in section 2.2.2. The Griineisen modelling of the quasi-static strain data will be
carried out in chapter 4, while the linear-chain-model is used to perform transient
simulations of the time-resolved strain measurements, which are discussed in
chapter 5.

2.2.1 Three-energy-model

The three-energy-model assumes the lattice of a solid to be impacted by the elec-
tronic, phononic and magnetic subsystem, illustrated in blue, orange and green in
figure 2.6 respectively.

electronic excitations

fs laser pulse

‘ O¢le = Fele Pele

. ._C— ¢
strain 7= ——*

o,

pho =

I /[)p]m

pho

Omag =

Tpag Prog

phononic exitations magnetic excitations

e . bAoA Ao — /N
999 . Pt PN
P99 ppho ) T T T t — \ ¥
8ad _ BN 5/ \ >

Figure 2.6: The three-energy-model describes the impact of the electronic, phononic and
magnetic subsystem on the lattice. The subsystems interact with each other and have their
own heat capacity C. Source: Mattern et al. [5]

Initially after excitation indicated by the red laser pulse, the electronic subsystem
is heated, as the electrons interact with the oscillating electromagnetic field of the
laser pulse. An excitation of electrons raises their energy over the Fermi energy,
which is illustrated in the pictogram in the blue box. The electronic system can
now transfer its energy to the phononic subsystem and to the magnetic subsystem
via the corresponding electron-phonon or electron-spin coupling. The efficiency

Section 2.2
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of this transfer depends on the coupling constants, which are depicted as grey
arrows in figure 2.6. The phononic subsystem and the magnetic subsystem can
also interact, with an efficiency given by the phonon-spin coupling. An excitation
of the phononic system induces lattice vibrations, as illustrated in the pictogram
in the orange box. The green box shows the excitation of the magnetic system by
disordering the magnetic moments. A distinct temperature T is assigned to each of
the three systems immediately after excitation, which will equilibrate over time.
Every subsystem has a different energy reservoir, which exerts a pressure on the
lattice quantified by the stress . The stress has the dimensions of an energy density,
which is equivalent to a pressure. The stress is given by:

o; = Iip;. (2.3)

The dimensionless proportionality constant between the stress o and the energy
density p is the Griineisen parameter I'. Each of the three subsystems can influence
the interatomic distance ¢ between the layers of the lattice of the solid. The relative
change of the layer distance

_ C—Cp

= (2.4)
Co

is entitled as the strain n. The stress and the strain are related via Hooke’s law:

o=cn. (2.5)

When referring to strain, it specifically denotes the out-of-plane strain in this thesis,
which is why the elastic constant c is often represented as c33. The separation of
the stress contribution of every subsystem on the lattice is captured in an extended
Griineisen model. Thus, an individual Griineisen parameter is assigned to each
subsystem.

In a three-temperature-model, each subsystem is assigned a distinct temperature,
which indicates that they have not yet reached equilibrium and thus not share
a common temperature. However, even when the temperatures are equal, the
subsystems still possess three distinct energies, as each subsystem has a different
energy density at the same temperature. Since energy density is proportional
to stress, I will refer to this model as a three-energy-model, rather than a three-
temperature-model, throughout this thesis. The energy densities are related to the
heat capacities via equation (2.6).

T
pr(T) = /0 c(T’) dT’. (2.6)



Lattice dynamics

If the heat capacity is given at a constant Volume V, it is called Cy, while when
given at constant pressure p it is called C,,. For a non-zero linear thermal expansion
coefficient a, the heat capacity at constant volume is always smaller than at constant
pressure because no volume work is done through expansion. The following
relation, taken from Gross & Marx [1], applies:

Cp — Cy = TVBa?, (2.7)

Here, T is the temperature, V the volume and B the bulk modulus, which can be
found in table 4.1. At room temperature, C, — Cy has a magnitude of 10~ for solids.

Electronic heat capacity

In the Sommerfeld model (Hunklinger [16]), the electronic heat capacity is given
by:

Cele ~ yT. (2.8)

The values for the Sommerfeld coefficient y can be found in table 4.1. They are given
by the density of electronic states at the Fermi level. It should not be confused with
the fine-structure constant a ~ 1/137, which is sometimes also called Sommerfeld
constant. The linear increase of the electronic heat capacity with the temperat-
ure is plotted in figure 2.7 (a). The corresponding energy density is depicted in
figure 2.7 (b), which is the integral of the heat capacity according to equation (2.6) .
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Figure 2.7: (a) The electronic heat capacity increases linearly in temperature. (b) The

electronic energy density increases quadratic in temperature.

For the considered materials at 300 K, the energy density of the electronic system

Section 2.2
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ranges from 10J/cm® to 25]/cm®, which small compared to the phononic and
magnetic energy densities.

Phononic heat capacity

According to Gross & Marx [1], the phononic heat capacity is given by:

T 3 Op/T 4 x ~ T3
PP = o[ — / = _dx=
QD 0 (ex - 1) 3R

Here, R = Nukp is the universal gas constant and ©p is the Debye temperature.
The proportionality of Cgho at low temperatures is called the Debye T3 law. The
thermal energy kgT at low temperatures can only excite vibrational quanta 7w
within the linear acoustic phonon dispersion. The convergence of Cf,ho at high
temperatures is the Dulong—Petit law. The limit of 3R originates from the three
possible vibration directions in three dimensions, which accounts for both potential
and kinetic energy contributions. Both the Debye T° law and the Dulong—Petit law
can be identified in figure 2.8 (a). The calculated heat capacities look very similar
for Gd, Tb, Dy and Lu, but a comparison of the corresponding energy densities in
figure 2.8 (b) reveals slight differences.
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Figure 2.8: (a) The phononic heat capacities are proportional to T* at low temperatures
and convergence against the limit of 3R at high temperatures. (b) Clearer distinctions
between the phononic heat capacities of the rare-earth materials become apparent, when
the phononic energy densities are compared.

At 300K, the phononic energy densities for the considered materials range from
300 J/cm? to 400 J/cm®. Well beyond the coupling time of the electronic and phononic
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subsystems, the phononic energy density is much larger than the electronic energy
density, which validates the idea of a two-energy-model.

Magnetic heat capacity

The magnetic heat capacity can be extracted from the total heat capacity. This is
done in section 4.3. The results are depicted in figure 2.9.
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Figure 2.9: (a) The magnetic heat capacities at constant pressure show a maximum at
the phase transition temperatures. (b) The plot of the magnetic energy density reveals
that even above the magnetic ordering temperature, small amounts of energy can still be
deposited into the magnetic system.

The heat capacity of the magnetic system can be approximated by the mean-field
theory. Here, the magnetisation M of a ferromagnet is given by the self-consistent
equation (2.10):

M(T) = tanh (MTTC) (2.10)

The phase transition temperature T marks the point where a ferromagnet trans-

itions to the paramagnetic state. In the case of a ferromagnet, this is known as the

Curie temperature and for antiferromagnets this temperature is called the Néel tem-

perature. Then M must be interpreted as the sublattice magnetisation. According

to Mattern et al. [20], the following relation applies to the magnetic heat capacity:
oM

Cy ~M —. 2.11
v~ M (211
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The magnetisation and the magnetisation multiplied by its derivative in respect
to the temperature is depicted in figure 2.10. Hence, the result of the mean field
model in figure 2.10 only provides a qualitative assessment of the magnetic heat
capacity. Therefore, for further analysis, experimental data were taken as shown in
figure 4.3.
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Figure 2.10: The qualitative magnetisation of a ferromagnet is described by the dark blue
line. The dashed light blue line indicates the qualitative behaviour of the magnetic heat
capacity.

2.2.2 Linear-chain-model

The linear-chain-model represents a solid as a one-dimensional chain of masses
and springs. A displacement of such a mass from the equilibrium position leads to
an oscillation of the chain. The resulting set of differential equations can be solved
numerically. When the solid is heated upon laser excitation, energy is imparted to
the system. In the paramagnetic state, this leads to an instantaneous compression
of the springs, as the added energy is modelled by inserted spacer sticks into the
linear chain, whose atoms cannot move instantaneously. The relaxation of the
springs causes an expansion of the linear chain as illustrated in figure 2.11 (a). The
amount of energy deposited in each chain, i.e. the length of the spacer sticks, is
given by an absorption profile, depicted in figure 2.11 (b). As the intensity of the
incident light decays exponentially according to the Lambert-Beer law, the springs
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at the surface of the sample usually show the most pronounced contraction, i.e.
the longest spacer sticks are inserted. Therefore, the pressure which acts from
above on a mass in the linear-chain-model is larger than the pressure which acts
from below. This difference induces a compression wave that traverses through the
material. The reflection of this wave at the surface of the sample creates a bipolar
strain wave, where the expansive part is preceded by a contractive part (Mattern
et al. [5]). The LTE originates from the contributed energy density of the excitation
laser pulse, as implied by equation (2.3).
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Figure 2.11: (a) The linear-chain-model with one-dimensional masses and springs is
illustrated. The length of the red spacer sticks in the linear-chain-model depends on
the amount of energy deposited into the system, given by the absorption profile. (b) A
multilayer laser absorption profile of the Tb sample is depicted. The discontinuities in the
absorption profile originate from interfaces between different materials of the sample.

When thin-films are excited on ultrafast timescales, it has to be taken into consid-
eration that the laterally homogeneous excitation of the laser pulse prevents an
expansion of the thin-film in the in-plane directions. This leads to an enhanced ex-
pansion out-of-plane, described by a change of the Griineisen parameter for purely
out-of-plane dynamics. This enhanced expansion is known as the Poisson effect. A
Poisson correction is therefore to be made, which can be quantified according to
von Reppert et al. [4]:
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: , c13 20|
Poisson correction factor for I, : 1+ ——. (2.12)
€33 A1
2
Poisson correction factor for I5yag @ 1 B (2.13)

(c11 + 012)033'

The values to insert here are found in table 5.3. For the positive phononic Griineisen
parameter [ ,p,, the prevented in-plain expansion leads to a stronger out-of-plane
expansion. As will be discussed in section 4.5.4, the magnetic Griineisen parameter
I'mag in Gd, Tb and Dy is negative. Accordingly, the absolute value of the mag-
netic Griineisen parameter is decreased when the Poisson correction is applied,
because the out-of-plane contraction would require an expansion in-plane, which
is hindered.



3 Scattering theory

This chapter will cover the fundamentals of scattering theory involved in ultrafast
X-ray diffraction (UXRD). This includes the basics of crystallography and structural
analysis. Of special importance is the concept of reciprocal space and the von Laue
condition, which is an observation condition for diffraction peaks to determine the
interatomic distance, i.e. the lattice constants. This chapter also covers the data
acquisition routine to evaluate the quasi-static and transient changes in the lattice
constant of materials. The sections 3.1 and 3.2 are adapted from Gross & Marx [1] and
Hunklinger [16].

3.1 Crystal structure

The periodically recurring structure of a crystal is called the basis. The number of
atoms in the basis depends on the examined material. The basis of most metals is
composed of one atom, while the basis of complex Protein crystals contains up to
10* atoms (Hunklinger [16]). Even if only one type of atom is present in a material,
the basis can still be diatomic, as in graphene. Every basis can be reduced to one
point in space. Those lattice points form a point lattice, but those points do not
necessarily have to be the locations of the atoms of the crystal.

An arbitrary point at the location 7 inside the crystal has the environment &. The
lattice vector R is defined in such a way that it points to an equivalent environment
in space, which means:

E(F) = E(F+R). (3.1)
Ris defined as

-

R = nlc_il + ngaz + I’l3(_1)3 n; € 7. (32)

The vectors a; are the basis vectors of the point lattice and hence represent its

symmetry. They therefore do not define the actual position of the basis atoms.

The lengths of the basis vectors are often called lattice constants. The basis vectors
form a parallelepiped, which is called the unit cell. The volume of this unit cell is
Ve = (d; X dz) - ds. Stringing together a sequence of unit cells forms the complete
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crystal without overlaps. Primitive unit cells are the smallest possible unit cells that
contain only one lattice point, which often lies in its origin. Unlike a conventional
unit cell, which contains more than one lattice point, the primitive unit cell often
does not fully capture the symmetry of the lattice. An example for that is shown in
figure 3.1 (a).

[ ] ([ ] ([ ] [ ] [ ] [ ]
primitive conventional
([ ] e ——¢
a,’
[ A . e d, [
a;
o
[ ] ([ ] [ ]
a;
[ ] ® [ J [ [ ]
(@) (b)

Figure 3.1: (a) The primitive unit cell has its lattice point in its origin. The conventional
unit cell contains more than one lattice point. (b) The Wigner-Seitz cell has its lattice point
in its centre. Source: Hunklinger [16].

The rectangular conventional unit cell in figure 3.1 (a) contains two lattice points and
is therefore not primitive. The primitive unit cell does not represent the symmetry
of the point lattice. The unit cells with the highest symmetry in three dimensions
form the 14 Bravais lattices. A Bravais lattice is an infinitely extended lattice that
looks the same from every grid point. In some cases, it is advantageous when the
unit cell has its lattice point in its centre and not like the parallelepiped in its origin.
That is why the most frequently used primitive unit cell is the Wigner-Seitz cell.
The Wigner-Seitz cell covers the area around a lattice point that is closer to this
lattice point than all other lattice points. When one constructs the Wigner-Seitz
cell, all geometric medians of the imaginary lines between the lattice points have
to be connected. This is depicted in figure 3.1 (b).
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3.2 Structural analysis

Each sample has an electron density distribution o (7). Similar to equation (3.1), the
periodicity conditions of the crystal also apply to the electron density distribution:

o(F) =o(F+R). (3.3)

In the case of X-ray diffraction (XRD), the electrons of the atoms act as the scattering
centres. If a plane wave hits such a scattering centre, it becomes the origin of a
spherical wave. The connection between the scattering amplitude ﬂ(é) and the
electron density distribution o(7) is:

AQ) = /V o(F) e 07 ay. (3.4)

Here, é = (qx» 9y 9-) is the scattering vector with é =k —k
and Vj is the volume of the sample. The scattering vector

is visualised in figure 3.2 as the difference of the k-vectors k'
between the outgoing and incoming photons. According k
to equation (3.4), A(Q) is the Fourier transform of o (7). Q=k'-k
In principle, one could transform back to:
1 - LR
F) = AQ) 97 d*Q. 3.5
o) = s [ A@ Q. @9

Figure 3.2: The scat-
However, the problem is that in diffraction experiments tering vector Q is visu-

the observed quantity is only the scattering intensity I (é) alised.

and not the scattering amplitude ﬂ(é) As can be seen in

equation (3.13), the information which contains the phase difference of the scattered
waves is lost.

3.2.1 Transformation to reciprocal space

The Fourier series of o(7) is:
o(r) = Z Ohkl eGm?  hkleZ. (3.6)
hk,l

Since o(7) is looked at in three dimensions, h, k, [ are three independent numbers
called Miller indices. The Fourier coefficients are given by:

Section 3.2
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1 =
ot = [ o) eriav, ()
Ve Jv,
V. is the volume of the unit cell and éhkl is a reciprocal lattice vector of the form:

G = hby + kby + 1bs. (3.8)

The relation between ppy; and éhkl is bijective, i.e. every reciprocal lattice vector
thl is assigned to exactly one Fourler coefficient ppg; and vice versa. In analogy to
the equation (3.2), the vectors bl, bz, b3 create a new coordinate system. Since h, k, [
are discrete, every vector Gt represents one point of the reciprocal lattice. The
reciprocal lattice is the Fourier transform of the lattice in real space. A combination
of the equation (3.3) and the equation (3.6) and with the information that ppy; is
independent of 7 yields:

elthl'r — elthl-(r+R)

— eiéhkl';: . eiéhkl'ﬁ
eiéhkl'ﬁ =1
S Gpr - R=27n n e ’Z.

From the equation (3.2) and the equation (3.8) therefore results:

bi - @; = 8. (3.9)

dj is the Kronecker delta. The basis vectors of the crystal lattice in real space and
the basis vectors of the reciprocal lattice are related by the following expression:

- 2
b, = V(az X d3) via cyclic permutation of the basis vectors (3.10)

C
and

(2m)°

C

(51 Xl;z)'l;a =

(3.11)

The vectors l;i have the dimension of an inverse length, which means that if the
vectors d; are reduced by a constant factor, the reciprocal lattice then expands by
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this factor. This is why the corresponding space is called reciprocal space, k-space
or momentum space (p = fik). The first Brillouin zone is the Wigner-Seitz cell of
the reciprocal lattice.

The plane in the crystal, spanned by lattice points, is called lattice plane. The
indexing of those lattice planes is done by the Miller indices h, k, . They are the
inverse intercepts with the axis of the coordinate system. The index zero is selected
for an intersection at infinity. This is shown in figure 3.3.

[001]

[100]

Figure 3.3: The Miller indices (hkl) are used to name the lattice planes, in this case of a
cubic lattice. The name of the planes can be associated with the inverse intercepts with the
axes. Source: Hunklinger [16].

The distance between the lattice planes is described by equation (3.12):

2r
dnk = =

The Miller indices can also be used to describe directions in real space. This is done

with a notation in square brackets. In a cubic lattice, the direction [hkl] stands
perpendicular to the (hkl) plane. The [hkl] direction is the same direction the recip-

(3.12)

rocal lattice vector thl points to. This also implies that thl stands perpendicular to
the (hkl) lattice plane. If one of the Miller indices is negative, this is notated with a
dash above the digit. Furthermore, in a hexagonal crystal lattice, it is common to in-
troduce a fourth Miller index i = —(h+k), which means a plane is thus named (hkil).
This is done to capture the three in-plane basis vectors @; and the out-of-plane basis
vector ¢, as illustrated in figure 3.4. Now the question could be asked why one
should introduce an extra index that contains no new information. This becomes
evident when one tries to write the [1120] direction, but with three cubic basis
vectors. Note that you can not just leave out the index i, because the (1120) plane
from the hcp lattice is not the (110) plane shown in figure 3.3 of the cubic lattice.

Section 3.2
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Instead, one has to consider that the basis vectors of the
cubic lattice are all orthogonal, while the vectors a; of the
hcp lattice are offset from each other by an angle of 120°.
This means that two of the three orthogonal axis of the
cubic system can be aligned with one a-axis and the c-axis
of the hcp lattice structure. The remaining axis of the
cubic system is offset by 30° from the remaining hcp axis.
The conversion of the [1120] direction in the hcp basis
system into a system with cubic basis vectors would yield  Figure 3.4: The hcp
the [1 cos(30°) 0] direction. Having non integer Miller  lattice structure has
indices is inconvenient, which is why four indices are used four basis vectors.

to describe the hcp lattice.

3.2.2 The von Laue condition

The scattering intensity 7 (é) is proportional to the square of the scattering amp-
litude A(Q). Together with equation (3.4) one obtains the expression:

2
. (3.13)

70) ~|A@)| = || ot e 7av

When the relation from equation (3.6) for o (7) of the reciprocal lattice is inserted,
that yields:

2

- 2 AR 2
‘ﬂ(Q)‘ = > ow /el(G‘Q”dV . (3.14)
k.l Vs
Since the function
¢1(G-0)7 (3.15)

oscillates, the contributions of the summation are averaged to zero. Excluded from
this is the case of Q = G, as here the value of the integral is finite:

Lo v, ,if0=G
/el(G‘Q)"dV:{ re=6 (3.16)
Ve

~0 ,else

The interference of the scattered waves is constructive in the case of é = G. This
observation condition is called the von Laue condition. The von Laue condition is
visualised in figure 3.5.
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9. .

Figure 3.5: The diffraction angles 0; are adjusted to change the length of the scattering
vectors Q; to match the reciprocal lattice vector Gy to satisfy the von Laue condition.

Different diffraction angles 6 and photon energies, which are represented by the
length of the k-vectors, yield different é—vectors, like Ql and éz in figure 3.5 with
0; and 0, respectively. If the scattering vector é matches the reciprocal lattice
vector é, which is the case for éz = éhkl in figure 3.5, then the von Laue condition
is satisfied. Hence, every point of the reciprocal lattice is a point in momentum
space, whose corresponding scattering vector Q satisfies the von Laue condition. In
a thin-film, the out-of-plane direction in reciprocal space refers to the g, direction,
while the g, and g, direction are in-plane. As the reciprocal lattice vector depends
on the distance between the lattice planes dyy (equation (3.12)), the relative change
of the out-of-plane lattice constant can be determined by identifying the positional
change of G along q,, which is done by measuring Aq,. In the following, three
alternative interpretations of the Laue condition will be presented, namely the
relation to Bragg’s law (theorem 3.1), the connection to the concept of the Brillouin
zone (theorem 3.2) and the visualisation of the von Laue condition through Ewald’s
sphere (figure 3.6).

» Theorem 3.1 (Relation between the von Laue condition and Bragg’s law).

Section 3.2
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Bragg’s law is a special case of the von Laue condition, as it can be directly derived
under certain conditions. Suppose that

1. The scattering is symmetric, which means the angles of the incoming and
diffracted beams are equal. (6 = 6’)

-

K'|.

2. The scattering is elastic, which means ‘l:‘ =

3. The scattering is coplanar, which means that the incoming beam, the scattered
beam and the normal of the diffraction plane all lie in one plane.

Then
‘é) =K -k | using figure 3.6
- - 2 - -
= Z‘k‘ sin () = 7”3 0=G
- 27 - 27
A dnki

= A = 2dpy; sin (0).

Higher orders can also interfere constructively with dyi;/n. With dpg; = d, this
leads directly to Bragg’s law.

nA = 2d sin (0) n e N. (3.17)
<
» Theorem 3.2 (Alternative formulation of the von Laue condition). The

von Laue condition can be rewritten, which reveals an interesting connection to the
concept of the Brillouin zone. This derivation is adapted from Gross & Marx [1].

¥=k+GC |2
212 1s2 o o o2 VTR
i :‘k) +2k-G+‘G) Hk):k'
- N 512
0:2k-G+‘G
12
- - G -
k.G=_l1 |:G
2
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<

The projection of k onto G is exactly G/2. The Brillouin zone is constructed to
cover the region around a lattice point, where all points are closer to it than to
any other lattice point. Consequently, the Brillouin zone’s edge lies halfway to
neighbouring lattice points, which means every scattering vector from the centre
to the edge fulfils the von Laue condition.

Another geometrical visualisation of the von Laue condition is achieved by Ewald’s
sphere, illustrated in figure 3.6. This sphere is constructed such, that the endpoint

of k points to any point of the reciprocal lattice, such as the origin (000). The circle
around the starting point of the vector k with the radius of ‘E‘ is called Ewald’s
sphere. The von Laue condition is satisfied, if Ewald’s sphere touches a reciprocal
lattice point, because in that case (j - G.

Figure 3.6: If the edge of Ewald’s sphere touches a reciprocal lattice point, the von Laue
condition is fulfilled. Source: Hunklinger [16]
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3.3 Data acquisition routine

The fundamental concept in the determination of the lattice constant with X-ray
diffraction (XRD) lies in the von Laue condition or Bragg’s law, as described in
section 3.2.2. The von Laue condition states that a diffraction peak, i.e. a local
maximum of the diffracted intensity 7 (é), can be observed if @ = G. When the
distance between the lattice planes of a material is changed via a cryostat or
laser excitation, the reciprocal lattice vector will change accordingly, as implied in
equation (3.12). If the lattice expands, the absolute value of the reciprocal lattice
vector will shrink. Consequently, the absolute value of the scattering vector has to
shrink as well to satisfy the von Laue condition again. This can be achieved by either
a reduced photon energy or a lower diffraction angle 6. Since the photon energy is
not tunable at our setup, changing 6 is the preferred method. The new diffraction
angle which fulfils the von Laue condition corresponds to the new lattice constant.
The same reasoning can be applied
to Bragg’ law, derived in theorem 3.1.
Since the wavelength of the incident
light is constant, d - sin (0) has to stay
constant in order to fulfil Bragg’s law.
A distance increase between the lat-
tice planes must lead to a diffraction
at lower angles 6, because 6 € [0, 90].
The shift along the g, direction of the 0.00 f ‘ : ‘ ‘ ;
peak Shown in ﬁgure 3.7 is analysed 2.100 2.125  2.150 2.175A 2.200 2225 2250
with a Gaussian fit with linear back- 9z (11A)

ground. This Gaussian fitted data is Figure 3.7: This exemplary Gaussian fit with
not the raw data collected by the de-  linear background was taken for the Gd dif-
tector. The detector images first need ~ fraction peak at 370K.

to be transformed into the reciprocal

space.

data
Gaussian fit |
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contraction

e
o
o

Intensity (arb. units)
o
=
w

3.3.1 Reciprocal space mapping

In a reciprocal space map (RSM), the scattered intensity 7 (é) is assigned to each
scattering vector é = (gx> 9y» gz)- In the context of thin-films samples, the diffraction
peak can be assumed to be isotropic in g, and g, direction if symmetrical scattering
is considered. This enables a projection of the three-dimensional peak on a two-
dimensional map by the integration over the g, direction. This two-dimensional
map is depicted in figure 3.8. The raw images of the area detector show the scattered



Data acquisition routine

X-rays. Each detector pixel measures the scattered intensity 7 (6), which is then
transformed to a scattered intensity in reciprocal space 7 (Q). This numerical
transformation process is described in more detail in the thesis of von Reppert [21].
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Figure 3.8: This is a RSM of the Gd sample shown in figure 2.1 (a) at 40 K. From left to
right the peaks are Y, Gd, Al,O3 and Nb. For the Tb sample and the Dy sample, the Gd peak
is replaced respectively. The peaks have a finite width in g, because the sample is neither
a perfect single crystal nor infinity large. Consequently, the sharper nature of the Al;O;
substrate peak is due to its larger volume and indicates a high crystalline purity.

Each of the local diffraction intensity maxima (peak) can be associated with a lattice
constant and thus a material of a sample from figure 2.1, because the peaks are
located at material specific g, positions, where the von Laue condition is fulfilled.
When integrating a peak of the RSM from figure 3.8 over the g, direction, one
obtains a Gaussian peak as depicted in figure 3.7. A shift of this peak along the q,-
direction indicates a change of the out-of-plane lattice constant, which enables the
measurement of the quasi-static or time-resolved strain. The concept of reciprocal
space mapping is illustrated in figure 3.9. The incoming light with a wave vector
k and an angle of incidence o is diffracted on a sample. The outgoing light with
the wave vector 12' hits the detector, which is positioned under a detector angle
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20. This type of scan is therefore called w/20-scan. The condition w = 0 defines a
symmetric diffraction geometry.

Detector Iq, q.)

&

e
J 1(q,, q.)dq..

v

Figure 3.9: When a scan of a reciprocal space map is performed, the shift of the diffraction
peak can be tracked by the adjustment of the angle of incidence w and the detector angle
20. Note that opposing to the reciprocal space map in figure 3.8, the g,-axis points upwards.
Source: Zeuschner [22]

In figure 3.9, the light purple plane is a segment of the reciprocal space. The empty
red circles indicate an old diffraction peak position, where the von Laue condition
was satisfied for the lattice constant corresponding to the reciprocal lattice vector
Gi. The red filled circle indicates the diffraction peak which appears for a new
lattice constant associated with G,. The intensity 7 (qx, qy) of the diffraction peak
is measured by the detector for every angle of incidence w. Therefore, each line on
the light purple plane is a detector slice for a different w and a segment of Ewald’s
sphere. The corresponding centre pixel of the detector lies on the g,-axis. The
angle of incidence w can be varied to change the scattering vector and thus finding
different diffraction peaks depending on the current reciprocal lattice vector of
the analysed layer. A scan of a segment of the reciprocal space in this manner
yields an 7 (é) map, which is the reciprocal space map depicted in figure 3.8. The
integration of the two-dimensional peak over the g, direction leads to a Gaussian
peak, as depicted in the blue inset in figure 3.9. The information of the change of the
out-of-plane lattice constant is fully contained in Ag,. As described in Zeuschner
et al. [23], the change of g, can be converted to a relative change of the out-of-plane
lattice constant, which is called the strain n:
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Aq,

- (3.18)
G

+ Aq,

Since Ag, is on the order of 1073, the strain is practically proportional to Ag,.

The technique of reciprocal space mapping is important to evaluate the positions
and widths of the diffraction peaks in reciprocal space. In some cases, a different
technique for strain assessments can be used, which is called reciprocal space
slicing. This technique is faster because the diffraction angle remains constant,
which eliminates the need to record a detector image for each diffraction angle.

3.3.2 Reciprocal space slicing

The reciprocal space slicing (RSS), introduced in Zeuschner et al. [23], is a faster
way to measure the shift of the diffraction peaks, as the diffraction angle w is not
changed during the experiment. The techniques of reciprocal space mapping and
reciprocal space slicing are compared side by side in figure 3.10. When reciprocal
space slicing is applied, only 7 (Q) of one detector slice is measured, which is the
highlighted dark purple slice. This one-dimensional subset of the reciprocal space
is a RSS. A RSM is composed of many RSS at different diffraction angles, which is
illustrated as the light purple area in figure 3.10 (a). A change of the lattice constant
of the material and thus the shift Ag, of the diffraction peak in reciprocal space
leads to the diffraction peak to slowly move out of the captured slice. However,
it can still be measured, as the diffraction peaks have a finite width, because the
sample is not infinitely large, has defects and the light used for the diffraction is
neither monochromatic nor parallel. As the shifted diffraction peak does not lie in
the centre of the detector slice any more, both a lower diffraction peak intensity and

different position are recorded. This is indicated by the blue inset in figure 3.10 (b).

In case of reciprocal space slicing, the measured shift Aq,p on the detector is not
the same shift as Aq, measured by reciprocal space mapping. The shift Ag,p has to
be corrected to match the shift of the diffraction peak from centre to centre. This
correction is called RSS correction.

Determination of the RSS correction factor

Depending on whether the RSM or RSS technique is used, a different shift of the
diffraction peak in the g, direction is determined. The correction of this discrepancy
between Aq,p and Aq, depends on the shape of the peak. The RSS factor S is
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Figure 3.10: (a) Reciprocal space mapping: The diffraction peak moves down along the g,
direction, as the lattice expands. (b) Reciprocal space slicing: This causes the peak to shift
out of the measured slice at a constant diffraction angle w, but as it has a finite width, this
slice is sufficient to observe a shift of the diffraction peak. However, the measured shift on
the detector Ag,p is not the actual Ag,. It has therefore be RSS corrected, depending on
the shape of the diffraction peak and the diffraction angle. Source: Zeuschner [22]
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calculated via equation (3.19), as described in Zeuschner et al. [23], under the
assumption of a Gaussian peak shape.

2
S=1+ (ﬁ) tan” (9). (3.19)
Ox
The RSS factor S depends on the widths oy and o, of the diffraction peak in the
qx and g, directions, as well as the diffraction angle 6. Before the technique of
reciprocal space slicing is applied, at least one RSM has to be recorded to determine
the width of the diffraction peaks. In figure 3.11, the peak width of the rare-earth

materials is shown as a function of temperature.
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Figure 3.11: The diffraction peak width increases, while the material goes through a phase
transition, which can be seen in the quasi-static strain measurements.

The comparison of the quasi-static strain measurements with the peak width o,
(figure 3.11) reveals that the peak width increases at the phase transition temper-
atures, because the material does not transform homogeneously. The quasi-static
strain measurements were conducted while the samples were heated (triangles
pointing upwards) and cooled (triangles pointing downwards). The Dy sample has
three local maxima in the width in the z-direction. The first two maxima at around
70K and 90K arise from the phase transition from ferromagnetic (FM) to helical
antiferromagnetic (AFM) and back, as illustrated in figure 2.4. This phase transition
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shows a hysteresis. The third peak in the peak width of the Dy sample occurs
at roughly 180 K, where the material undergoes a second phase transition from
AFM to paramagnetic (PM). The materials Gd and Tb only have this second phase
transition from FM to PM at their respective Curie temperature. However, the
relative change of the peak width is below 4%, rendering the temperature-resolved
RSS factor practically constant, which is visualised in figure 3.12.
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Figure 3.12: The temperature-resolved RSS factor was calculated by equation (3.19) and

the use of the peak widths. The temperature-resolved RSS factor is practically constant,
with small peaks around the phase transitions.

In order to calculate the transient, i.e. time-resolved RSS factor, the temperature-
resolved average width o, of diffraction peaks are used. These widths are obtained
by the technique of reciprocal space mapping. The time-resolved RSS factor S(¢)
is calculated similarly to the constant RSS factor calculated in equation (3.19). As
described in Zeuschner et al. [23], the width o,(t) is now time-dependent:

_ ozop (1)

oy(t) = \/ 7~ on (D)2 tar (0) (3.20)
Uz(t) ? 2

= S(t) =1+ (0—) tan (9) (321)
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Here, op(t) is the transient width of the diffraction peak on the detector. An
example of the time-resolved RSS factor is shown in figure 3.13.
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Figure 3.13: The transient RSS factor increases when the material shows an uncorrected
strain. The transient RSS factor significantly influences the strain, with a change of up to
20%.

The time-resolved strain data was collected with the pump-probe setup outlined
in section 5.1. The peak width op(t) on the detector and thus the transient RSS
factor increases, when the material exhibits an inhomogeneous strain profile. As
will be discussed in chapter 5, this is due to energy that flows into the respective
layer, which includes a thermal expansion that does not homogeneously excite the
layer and therefore broadens the peaks. In a first approximation, the transient RSS
factor depends linearly on op(t), as can be seen in figure 3.13. The time-resolved
RSS factor of Gd is almost constant in time, because the temperature-resolved RSS
factor is close to one, since the diffraction peaks of Gd are the broadest in oy.
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4 Extended Grineisen model

This chapter presents the temperature-resolved quasi-static strain measurements of
the Gd, Tb and Dy 40 nm thin-films carried out at the KMC-3 XPP endstation at
BESSY II. The phononic and magnetic Griineisen parameters of Gd, Tb and Dy are
extracted in terms of an extended Griineisen model. The extracted magnetic Griineisen
parameter is constant for Dy but surprisingly temperature-dependent for Gd and Tb.
This result is unexpected, because previously conducted measurements at Dy and Ho
([3, 4]) have shown a temperature-independent Griineisen parameter. The separation
of the phononic and magnetic Griineisen parameters is adapted from von Reppert
et al. [24].

4.1 Endstation KMC-3 XPP at BESSY II

The endstation KMC-3 XPP at the BESSY 1I facility in Berlin, Adlershof is cap-
able of time-resolved X-ray diffraction with tuneable photon energies in the hard
X-ray regime. It is also well suited for temperature-resolved measurements of
the quasi-static strain, because of its high brilliance. The time-resolution in the
standard mode of operation of 100 ps is, however, often not sufficient to resolve
ultrafast coherent strain dynamics, i.e. sound waves. For time-resolved ultrafast
strain measurements, the plasma X-ray source was used, which is presented in
chapter 5. The experimental setup of the KMC-3 XPP endstation at BESSY II is
sketched in figure 4.1. The high brilliance synchrotron light source, the cryogen-
ically cooled sample holder inside a vacuum chamber and the area pixel detector
attached to a four-circle goniometer renders this setup optimal for the temperature-
resolved strain assessments. The X-ray light is generated by highly relativistic
electrons, which are deflected by a bending magnet. The thus generated synchro-
tron radiation is directed onto the sample via optical elements such as mirrors
and a monochromator. The diffraction signal is then captured by the area detector.
Further information about the experimental setup can be found in Réssle et al. [25].
At the KMC-3 XPP beamline, full reciprocal space maps (RSM) are recorded, which
means that the reciprocal space slicing technique as described in section 3.3.2 is
not utilised. An exemplary picture of an RSM can be found in figure 3.8.
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Figure 4.1: This is the experimental setup of the KMC-3 XPP beamline at BESSY II, reduced
to the relevant components for static strain measurements. The figure is adapted from
Rossle et al. [25]. The synchrotron light is directed onto the sample through X-ray optics.
The sample can be cooled by a cryostat, and the resulting signal is captured by the detector
mounted on a four-circle goniometer.
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4.2 Temperature-induced static strain

The goal of the temperature-resolved strain measurements is to extract the phononic
and magnetic Griineisen parameters of Gd, Tb and Dy, which are required in order
to understand and model the ultrafast strain dynamics. The magnetic Griineisen
parameter is the proportionality constant between the exerted magnetic stress and
magnetic energy density in terms of an extended Griineisen model presented in
section 2.2.1. The first step to extract the Griineisen parameter is to determine
the temperature-resolved quasi-static strain (figure 4.2). Depending on the tem-
perature, the strain can either be positive due to thermal expansion or negative,
which is then called negative thermal expansion (NTE). The second ingredient
necessary to extract the magnetic Griineisen parameter is the heat capacity of
each material (figure 4.3). The quasi-static strain is then converted to stress via
equation (2.5), and the temperature is converted to a thermal energy density with
equation (2.6). The stress and the energy density are subsequently divided into
their electronic, phononic and magnetic components. The literature values and the
extracted Griineisen parameter can be found in table 4.1.

> f ] =%— Gd 40 nm
Tb 40 nm
7 == Dy 40 nm heating
=¥— Dy 40 nm cooling

B Gd bulk
Darnell et al. 1963

Tb bulk
Darnell et al. 1963

_ Dybulk
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Figure 4.2: The measured temperature-resolved quasi-static strain of Gd, Tb and Dy
is depicted with triangles pointing upwards while heated and with triangles pointing
downwards while cooled. The quasi-static strain measurements for heating and cooling of
Gd and Tb are practically identical, while Dy shows a hysteresis because of the additional
phase transition into the AFM phase. The 40 nm thin-film data is also compared with bulk
data (semi-transparent circles) from Darnell [26, 27].
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The temperature-dependent shift of the diffraction peaks in the recorded RSMs
at the KMC-3 XPP endstation are used to determine the strain of the rare-earth
thin-films, as described in section 3.3. This strain is depicted in figure 4.2, together
with the bulk data of the materials, which are nearly identical. The 40 nm rare-earth
thin-film materials have in common that the linear thermal expansion (LTE) above
their respective ordering temperature is driven by the phononic pressure. Despite
the material is heated, a characteristic they also share is their contraction with a
strain minimum at the magnetic ordering temperature. This contraction is called
negative thermal expansion (NTE). For Gd and Tb, the ordering temperature is
known as the Curie temperature, which is Tc g4 = 320K and T, 1, = 250K in
our samples respectively. For Dy, this ordering temperature is called the Néel
temperature (Ty, py = 190 K), since Dy already has gone through its ferromagnetic
(FM) to helical antiferromagnetic (AFM) phase transition at lower temperatures.
The magnetic ordering temperature corresponds to the minimum of an interpolated
polynomial fit of the thin-film quasi-static strain data, which matches the bulk
data. The temperatures found that way are roughly 20 K — 30 K higher than the
respective literature values, which can be found in table 4.1. The reason for that
discrepancy could be that the strain minimum is not aligned with the Curie tem-
perature, as energy can still be deposited in the magnetic subsystem, even above
the magnetic ordering temperature (Kog et al. [28]). The main difference of the
temperature-dependent strain between Gd, Tb and Dy occurs 80 K below their
respective magnetic ordering temperatures. The strain of Gd is mostly constant
between 50 K 170 K. The strain of the Tb layer has a distinct maximum at around
170 K, while Dy goes through a second phase transition at approximately 80 K from
FM to AFM, as illustrated in figure 2.4. In the FM phase of Dy, the heating and cool-
ing measurements of Dy show a hysteresis. This different behaviour is also evident
in the bulk material data from Darnell [26, 27]. However, a hysteresis is also visible
in the AFM phase. In previous measurements (von Reppert et al. [4]), this hysteresis
was not observed. The hysteresis in the AFM phase is likely an artefact caused by
slight movements of the sample holder during heating and cooling. At the Curie
temperatures of Gd and Tb and the Néel temperature of Dy, the lattice constants of
the rare earths are minimal. Below these temperatures, the expensive phononic
stress competes with a contractive stress induced by the magnetic subsystem. The
idea of an extended Griineisen model is to separate the stress components into a
conventional positive phononic Griineisen parameter and in our case a negative
magnetic Griineisen parameter.



Heat capacities of rare earths

4.3 Heat capacities of rare earths

The heat capacity is the next needed ingredient to determine the magnetic Griineisen
parameter. The measurements of the bulk heat capacity C, at constant pressure
from Griffel et al. [29], Jennings et al. [30], Griffel et al. [31] and Jennings et al. [32]
for Gd, Tb, Dy and Lu are shown in figure 4.3.

70 b
60 Gd Griffel
et al. 1953
= 50 Tb Jennings
M etal. 1957
g 40 Dy Griffel
g et al. 1955
o 0 Lu Jennings
O et al. 1960
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Figure 4.3: The temperatures where the peaks in the measured heat capacity data for
Gd, Tb and Dy occur, can be identified as the phase transitions or magnetic ordering
temperatures. The heat capacity of Lu is included as a proof of principle to illustrate the
convergence against the Dulong—Petit limit of 3R, indicated by the red dashed line.

The total heat capacity in figure 4.3 is the sum of the heat capacity of the electronic,
phononic and magnetic subsystem, as illustrated in figure 2.6. All the materials have
a higher heat capacity than predicted by the Dulong-Petit limit, which is partially
because energy can still be distributed into the magnetic subsystem, even above
the magnetic ordering temperature. Another contribution is the electronic heat
capacity shown in figure 2.7 (a), which causes a deviation from the Dulong-Petit
limit. This is supported by the heat capacity measurements of the paramagnetic
rare-earth material Lu, which is included as a proof of principle, because the
magnetic subsystem has no contribution to the heat capacity in this material. The
measured data for Lu should therefore equal the sum of electronic and phononic heat
capacities, as depicted in figure 2.7 (a) and figure 2.8 (a) respectively. The subtraction
of those two heat capacities from the total heat capacity yields the magnetic part
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of the heat capacity, which is shown in figure 2.9 (a). The corresponding energy
density to the heat capacity of each subsystem is obtained by the integration of
the heat capacity over the temperature (equation (2.6)). The data obtained in
this way are interpolated and not measured, which is why they are not depicted
with data points any more. As expected, the magnetic subsystem has almost no
contribution in Lu for the heat capacity. The small but non-zero contributions arise
because the literature value of the Debye temperature does not perfectly match the
measurement values. The shape of the temperature-dependent heat capacity in
Gd, Tb and Dy resembles the prediction from figure 2.10 well. The achieved result
is that an energy density can now be assigned to each of the three subsystems at
each temperature. The use of newer heat capacity data as in Dan’kov et al. [33],
Jayasuriya et al. [34] and Pecharsky et al. [35] yields a very similar result. From
statistical mechanics, the magnetic energy density of Dy below the phase transition
is expected to be the largest, because it has the largest total angular momentum
quantum number J, which can be seen in table 2.1. The following relation applies
to the entropy for systems with quantized angular momentum:

A
S:TQ:NkBIn(2]+1). (4.1)
This is confirmed, as the relation ppy, mag > PTb, mag > PGd, mag holds below their

phase transition temperature into the paramagnetic phase.

4.4 Transformation from strain to stress

The strain n from figure 4.2 is related to the stress ¢ via Hooke’s law (equa-
tion (2.5)). cs3 is the corresponding elastic constant, as described in Gross &
Marx [1]. This means that the temperature-resolved strain can be converted into a
total temperature-resolved stress oiot, Which is shown in figure 4.4 (a). The elastic
constant cs3 is assumed to be independent of the temperature, as its relative change
is approximately 10% over the whole measured temperature interval. For more
information on that, see the table of literature values table 4.1.

Figure 4.4 (a) depicts the stress plotted against the temperature, and figure 4.4 (b)
shows the stress plotted against the phononic energy density. This is possible
because figure 2.8 (b) relates each phononic energy density with a corresponding
temperature. The phononic stress is then subtracted from the total stress to extract
the magnetic Griineisen parameter.
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Figure 4.4: (a) The total stress is plotted against the temperature. (b) The total stress is
plotted against the phononic energy density corresponding to the measured temperature.
The red dashed lines indicate the phononic contribution to the total stress, extracted from
the high temperature limit.

4.5 Phononic and magnetic Griineisen parameters

The Griineisen model interprets the stress as an energy density, which can be seen
in equation (4.2), since the Griineisen parameter I is a dimensionless quantity.

o=1Ipg. (4.2)

Applied to the phononic energy density, one can extract the phononic Griineisen
parameter I p, as the slope of the red dashed lines in figure 4.4 (b), since the only
present stress and therefore strain is exerted by phonons. The phononic Griineisen
parameters, extracted from the slopes of the linear functions in figure 4.5 (a), are
I'pho, Gd = 0.4, Ipho, b = 0.7, Ipho, Dy = 0.9. As shown in figure 2.7 (b), the electronic
energy density pele represents only a small fraction of the total energy density and
can therefore be neglected. Those linear functions with the slope of the phononic
Griineisen parameter are plotted individually in figure 4.5 (a), and when they are
subtracted from the total stress (figure 4.4 (b)), the remaining stress is the magnetic
stress omag (figure 4.5 (b)). The magnetic energy density pmas can be calculated
from the magnetic heat capacity, illustrated in figure 2.9 (b). In order to identify the
magnetic Griineisen parameters, one has to determine the slope of those functions.
It stands out that the phononic Griineisen parameter of Gd is much smaller than
for Tb and Dy. The reason for this is presumably that the phononic expansion for
Gd (red dashed line figure 4.4 (b)) is approximated linearly too close to the phase
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Figure 4.5: The Griineisen parameter can be identified as the slopes of the functions in
the respective plots. (a) The phononic Griineisen parameter is constant for Gd, Tb and Dy.
(b) The magnetic Griineisen parameter of Dy is constant, while it is energy density and
therefore temperature-dependent for Gd and Tb.

transition of Gd. The use of high temperature literature values would probably lead
to a steeper fit and a similar result compared to the other rare earths. By chance, the
result of I,ho, ga = 0.4 that I derived from my measured data up to 400 K agrees very
well with the result in Kog et al. [28], where the Griineisen parameter is calculated
with equation (4.3).

aB
r=s—.
Cre
Here, « is the linear thermal expansion, B the bulk modulus and Crg the heat
capacity of the rare-earth element. The bulk modulus assumes isotropic elastic
constants, which do not apply to materials with an hcp lattice structure. This
difference in the calculation explains the discrepancies that arise in the computation
of the magnetic Griineisen parameter compared to Kog et al. [28]. It is not possible
to determine one magnetic Griineisen parameter I, as the slopes in figure 4.5 (b)
are not constant any more.

(4.3)

4.5.1 Magnetic Griineisen parameter of Gd

It is evident that the magnetic Griineisen parameter of Gd is energy density and
therefore temperature-dependent, since the slope of the graph of the function in
figure 4.6 is not constant. However, it is still possible to determine two Griineisen
parameters, one for low and one for higher energy densities.



Phononic and magnetic Griineisen parameters

200 L T T T T T T T T
i = (Gd data
150 = = = linear fit 1 -
. == linear fit 2
< 100 - | 1
Ay
p= : : :
~ 50 - | ]
o .
© 0
3 I
o) o ]
2 .
g |
b —50 F . . 4
wn . I
~100 | | 1
. . \
=150 [, 1 L L L I L L L I L .
0 25 50 75 100 125 150 175

Pmag (J/cm3)

Figure 4.6: The extracted magnetic Griineisen parameter of Gd is I'mag, ca = —2.5, taken
between 80J/cm? (220 K starting temperature) and 160 J/cm® (320K = Tc, Gd)- Tnag, ca = —1
below the starting temperature.

The limit between those two regimes was chosen to be at 80 ]/ cm?, which corres-
ponds to a temperature of 220 K. This is exactly the temperature at which the
time-resolved strain measurements in the ferromagnetic phase were conducted
(see section 5.3.1), as it is 80 K below the phase transition. This qualifies that exact
energy density as an appropriate starting point of the fit, because the determined
Griineisen parameter could then be used for the modelling of the time-resolved
strain measurements in the FM phase. The other borders of the linear fits are the
first data point at low energy densities and the measured Curie temperature of 320 K
at high energy densities. The magnetic Griineisen parameter of Gd, as determined
by Kog et al. [28], ranges from Iya5, ca € [—1,—2], which is of lower absolute
value than the estimated I'mag a4 = —2.5 presented here. Additionally, the possible
underestimation of the phononic Griineisen parameter would further increase the
magnitude of I},,s, g4 = —2.5 and therefore further increase that discrepancy.

4.5.2 Magnetic Griineisen parameter of Tb

Similar to the magnetic Griineisen parameter of Gd, the magnetic Griineisen para-
meter of Tb is not constant. It is practically zero at low temperatures, which is
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counterintuitive, as it means that energy can be deposited in the magnetic system,
but it does not exert any stress.
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Figure 4.7: The extracted magnetic Griineisen parameter of Tb is I'nae T = —2.7. This linear

fit 2 was taken between 75 J/cm® (170 K starting temperature) and 164 J/cm?® (250K = T ).
The constant regime of I1y,s b is between 5J/cm?® (41K) and 64 J/cm? (156 K).

The linear fit 1 in figure 4.7 was taken between the first data point and 64 J/cm?
(170K), as this is the range, where the approximation of a constant magnetic
Griineisen parameter is best. The lower boundary of the linear fit 2 is 75]/cm3,
which corresponds to 170 K, which is again 80 K below the phase transition, where
time-resolved measurements in the ferromagnetic phase were conducted (see sec-
tion 5.3.2). The upper boundary is the measured Curie temperature of 250 K. If a
Griineisen parameter with higher accuracy is necessary, the use of more than two
linear fits has to be considered, as the magnetic stress plotted against the magnetic
energy density has a higher curvature for Tb than for Gd.

4.5.3 Magnetic Griineisen parameter of Dy

The extraction of the magnetic Griineisen parameter of Dy is more straight forward
than for Gd and Tb, since it is approximately constant over the whole relevant
temperature interval from 42 J/cm?® to 130 J/cm®. The lower boundary corresponds
to 100 K, where the time-resolved strain measurements in the ferromagnetic phase
were conducted (see section 5.3.3), and the upper boundary corresponds to the Néel
temperature of Dy of 190 K.
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Figure 4.8: The extracted magnetic Griineisen parameter of Dy is I'nag py = —3.1. The linear
fit was taken between 42 J/cm® (100K starting temperature) and 130 J/cm® (190K = Ty, py).

The hysteresis of the strain measurements presented in figure 4.2 is still visible
during the phase transition into the AFM phase. This phase transition is most
likely the reason why the heating and cooling Griineisen parameter of Dy deviates
but is perfectly aligned for Gd and Tb. The magnetic Griineisen parameter for
Dy, averaged over heating and cooling, amounts to I, py = —3.1. This result
agrees fairly well with the result from Mattern [36], where I}a5, Dy = —2.9 was
determined. The constant nature of the magnetic Griineisen parameter of Dy could
be a coincidence, but similar results were found in measurements performed on
Holmium in Pudell et al. [3], where the Griineisen parameter of Holmium was also
constant in temperature.

4.5.4 Comparison of Griineisen parameters

It is still an open question why the magnetic Griineisen parameter for Gd and
Tb is temperature-dependent, while the magnetic Griineisen parameter for Dy is
constant. In a temperature interval where both Griineisen parameters are non-zero,
it applies that |F mag| > |F pho|, which can be seen in figure 4.9. This is the reason
why Gd, Tb and Dy all exhibit a negative thermal expansion, which is also essential
to understand the negative thermal expansion on ultrashort timescales presented
in chapter 5.
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Figure 4.9: To get an overview of the magnitude of the phononic and magnetic Griineisen
parameters, they are here plotted in the same diagram against their respective energy

density.

Table 4.1: The literature values for Gd, Tb, Dy and Lu are taken from Haynes [37], unless

stated otherwise.

property Gd Tb Dy Lu
atomic weight (g/mol) 157.25 158.92534  162.50  174.967
density p (g/cm™3) 7.901 8.230 8.551 9.841
lin. therm. expansion c-axis a (107/K) 10.0 124 15.6 20.0
Sommerfeld coefficient y (m]J/(mol K?)) 448 3.71 4.9 8.194
bulk modulus B (GPa) 37.9 38.7 40.5 47.6
Debye temperature Op (K) 182 177 183 185
elastic constant ¢33 at 298 K (GPa)” 71.9 [38] 72.25[39] 78.1[39] /
measured mag. ordering temp. (K) 320 250 190 /
literature mag. ordering temp. (K) 294 [33] 220 [40] 179 [40] /
phononic Griineisen parameter I ph, 0.4 0.7 0.9 /
magnetic Griineisen parameter I7n,o -2.5% -2.7% -3.1 /

“ The elastic constants depend on the temperature, but the relative changes are rather small, e.g. for
Tb, c33 at 80 K amounts to 79.83 GPa, which is roughly 1.1 times the value of c33 at 298 K. ([38, 39])
® The magnetic Griineisen parameter for Gd and Tb are temperature-dependent. The given value is
based on a linear fit between 220 K for Gd and 170 K for Tb and the corresponding Curie temperature.



5 Ultrafast magnetostriction

This chapter contains the time-resolved ultrafast strain measurements of Gd, Tb and
Dy 40 nm thin-films carried out at the plasma X-ray source (PXS). I conducted the
measurements on the Gd and Tb samples, while the measurements on the Dy sample
were conducted by my colleagues Maximilian Mattern and Alexander von Reppert
in 2021. Similar experiments have already been conducted in our group by Pudell
et al. [3] on Ho and by von Reppert et al. [4] on Dy with a different layer thickness. The
time-resolved strain measurements of Gd by Kog et al. [28] at BESSY II were limited
by a time-resolution of 100 ps, typical for synchrotron experiments. The thin-film
strain responses are examined in two states, namely in the paramagnetic (PM) phase
and in the ferromagnetic (FM) phase for Gd and Tb and in the antiferromagnetic
(AFM) phase for Dy. The rare earths exhibit negative thermal expansion below their
magnetic ordering temperature on a ps timescale. The laser-induced contraction of Gd
is delayed, which indicates a slower demagnetisation compared to Tb and Dy. This
result is in line with the findings of Wietstruk et al. [11]. The strain dynamics in the
PM phase are unambiguously modelled by a one-energy and linear-chain-model with
the udkm1Dsim toolbox, presented in Schick [41].

5.1 Plasma X-ray source (PXS) setup

The plasma X-ray source (PXS) is a tabletop setup to generate femtosecond hard
X-ray pulses with a kilohertz repetition rate. This is achieved by a focussed 50 fs
(FMHM), 7W and 1kHz laser beam with a central wave length of 800 nm on a
15 pm thin copper tape. A copper plasma is created at the focal point, which leads
to free electrons due to the high energy density. The free electrons are accelerated
back to the copper, because of the oscillating electromagnetic field provided by
the laser pulse, which consequentially leads to an emission of Bremsstrahlung
and characteristic Cu-K,; and Cu-K,; radiation. The photons emitted from the
Cu-Kg 2 transitions have a wavelength of approximately Ax ray = 1.54 A (8.047 keV
and 8.028 keV [42]). They are then focused on the sample by a Montell X-ray optic
with a divergence of 0.3°, which also acts as a monochromator, as described in
Bargheer et al. [43]. The laser pulse with a central wavelength of 800 nm has a pulse
duration of 50 fs. The generated X-ray pulse has a duration of < 250 fs, because
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X-ray photons are only generated while energetic electrons with energies above
8keV generated by the 800 nm laser pulse are present. The optical pump and X-ray
probe pulses then hit the sample with a time delay At. The sample is mounted on a
two circle goniometer together with a Pilatus X-ray area detector. A sketch of the
PXS setup can be seen in figure 5.1. More detailed information about the PXS can
be found in Zamponi et al. [14] and Schick et al. [15].

Legend Elite Duo (Coherent) Mantis (Coherent)
Ti:Sa-amplifier Ti:Sa-oscillator )
1kHz, 7W —— 80 MHz, 500 mW Two circle
50 fs, 800 nm 30 fs, 800 nm goniometer
(Huber)
Copper tape Montell X-ray optics
80% i Plasma X-ray i X-ray probe
20% \ generation \ 250 fs | 800 nm
\ pump

Mechanical delay stage

—
At
Figure 5.1: This sketch illustrates the PXS setup which, broken down to the essentials, is
merely a pump-probe experiment with an 50 fs 800 nm pump and an 250 fs X-ray probe.
The time delay At between pump and probe can be adjusted via the mechanical delay stage.
The sketch is adapted from Zeuschner [22].

The laser pulses generated in the Ti:Sa-oscillator and Ti:Sa-amplifier of the company
Coherent are split into two beams, which are used in this pump-probe experiment.
The general concept of a pump-probe experiment is that the pump pulse excites
(pumps) the sample. After the excitation, the probe pulse is used to analyse the
sample, in our case to measure the Bragg-peak position and consequently the strain,
utilising the von Laue condition introduced in section 3.2.2. It is common for pump-
probe experiments to use optical pump and probe beams, but in order to diffract
from the crystal lattice, an X-ray probe is necessary and used in a time-resolved
XRD setup. Bragg’s law reveals (theorem 3.1), that the wavelength has to be smaller
than twice the distance of the lattice planes. Since the time delay At between the
pump and probe pulse is variable, the temporal strain evolution can be evaluated
(figure 5.2). In contrast to the measurements at the KMC-3 XPP endstation at BESSY
IT presented in chapter 4, the data acquisition routine used for my thesis at the
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PXS involves reciprocal space slicing (RSS) as described in section 3.3.2, in order to
reduce the measurement time. The data shown here is therefore RSS corrected by a
time-resolved RSS factor.

5.2 Ultrafast strain dynamics in the paramagnetic
phase

The time-resolved ultrafast strain dynamic measurements are started off with the
investigation of the strain in the paramagnetic phase of the Gd, Tb and Dy thin-film
samples, whose structure is shown in figure 2.1. In particular, each of the rare-earth
samples contains a layer of the respective rare-earth material and a layer of Nb.
The measured time-resolved strain (section 5.2.1) was modelled with a linear-chain-
model (figure 2.11 (a)) and the one-energy-model (figure 2.6), to provide a sufficient
understanding of the dynamics (section 5.2.2). The modelling of the ultrafast strain
dynamics was carried out in the first 60 ps for each set of measurements.

5.2.1 Experimental strain transients

The experimentally determined strain transients of the rare-earth thin-films in the
PM phase are depicted in figures 5.2 (a), 5.2 (c) and 5.2 (e). The corresponding signal
of the Nb layer is shown in figures 5.2 (b), 5.2 (d) and 5.2 (f). The materials Gd, Tb
and Dy all show positive strain due to thermal expansion, but only after 4 ps, as the
Y layer on top is excited first. Similarly in all materials, this strain declines at delays
above 120 ps, which can be interpreted as the heat that flows into the substrate of
the sample. Before 120 ps, the strain dynamics are dominated by acoustic waves
which propagate through the sample. Their impact on the strain can be visualised
by a strain map, depicted in figure 5.3 (b).

The initial expansion during the first 10 ps is induced by the expansive strain wave
that enters the rare-earth layer. At roughly 20 ps, a decline in the measured strain
signal is observed across all rare-earth materials, because the strain wave partially
exits the rare-earth layer and traverses to the underlying Nb layer. This is why the
Nb layer shows its largest expansion at approximately 20 ps (figures 5.2 (b), 5.2 (d)
and 5.2 (f)). A portion of the strain wave is reflected at the interface between the
rare-earth material and the Nb. Since the reflected strain wave is lower in amplitude,
a decline in the strain signal can be observed. When the strain wave hits the surface,
i.e. the interface between Y and air, it is reflected into the sample again. As air
has a larger acoustic impedance (slower sound velocity) compared to Y, the strain
wave undergoes a phase shift of r, which transforms the reflected strain wave into
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Figure 5.2: (a) shows the strain of the Gd layer at 320K and (b) the corresponding Nb
strain. (c) depicts the strain of the Tb layer at 320K and (d) the corresponding Nb strain.
(e) illustrates the strain of the Dy layer at 250 K and (f) the corresponding Nb strain.
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the material to one of contractive stress. This is why the decay in the strain signal
becomes steeper at around 40 ps. The shapes of transient strain maxima differ
between the rare earths, most prominently at high fluences at 15 ps and 35 ps, as the
strain of the Gd layer at 5.0 mJ/cm? shows two distinct maxima, while the second
peak appears in the Tb and Dy layer only as a shoulder at 35 ps. The differences in
the time-resolved shapes of the strain is supported by the simulation in section 5.2.2.
The larger amplitude of Dy compared to Gd and Tb is also discussed there.

Since the rare earths are in their PM phase, no energy can be deposited in the
magnetic subsystem of the three-energy-model illustrated in figure 2.6, because the
spin system is already fully disordered. The excitation energy can only be deposited
in the remaining electronic and phononic subsystems. Both exert a positive stress on
the lattice, which leads to an expansion of the rare-earth materials after excitation.
The main differences between the strain measurements in Gd, Tb and Dy are that
Gd at 5.0 mJ/cm? shows far less strain than Tb at 5.1 mJ/cm?. The strain of Dy
at 3.4 mJ/cm? is about as large as of Tb at 5.1 mJ/cm? but at a significantly lower
fluence. The observed strain of the Nb layer is severely impacted by the rare-earth
layer above it, because an expansion of the rare-earth layer leads to a compression
of the Nb layer. Since Dy exhibits the largest strain per fluence in the PM phase,
the compression of Nb is most prominently visible in figure 5.2 (f). The thermal
expansion of the Tb layer at 320 K is weaker than that of the Dy layer but stronger
than of the Gd layer. Therefore, the thermal expansion of the Nb in the Tb sample
induced by the laser excitation can be compensated by the contraction induced
by the expansion of the Tb layer at timescales lower than 20 ps. The low strain
amplitude of the Gd layer compared to the Tb and Dy layer can be explained by
the fact that the measurement was conducted at 320 K where Gd is still close to its
phase transition. The proximity to the Curie temperature enables some residual
amount of energy to be distributed into the magnetic system, which counteracts
the expansion since the magnetic Griineisen parameter is negative, which was
previously discussed in chapter 4. As a result, the Nb layer in the Gd sample shows
an instantaneous expansion, because the compression of the Nb layer induced by
the expansion of the Gd layer only hinders but not compensates the expansion
induced by the laser excitation. The interpretations of these dynamics will now
subsequently be verified with a one-energy and linear-chain-model.

5.2.2 Simulated strain transients

I used the udkm1Dsim toolbox by Schick [41] for the simulations, which is essen-
tially based on a linear-chain-model as illustrated in figure 2.11. The length of the
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red spacer sticks in this model is determined by the energy deposited in the sample
by the pump pulse, which is calculated by a multilayer absorption model. Therefore,
the first step is to generate a temperature map (figure 5.3 (a)), which defines the
length of the spacer sticks for each time and sample depth. From that, a spatially
and time-resolved strain map (figure 5.3 (b)) is generated, from which the average
strain is calculated to fit the shape of the strain signal of the rare earths in the PM
phase. The excitation fluence was used as a fit parameter. The simulations also act
as a calibration for future simulations in the FM phase. The results of the simulation
are depicted as a continuous line, while the measured data is shown as data points.
Since thin-films are simulated, the Griineisen parameters are Poisson corrected,
as described in section 2.2.1. The literature values used for the simulations can be
found in table 5.3.

Delay (ps)
Strain n 1073

: i
0 10 20 30 40 50 60 70 80 0 20 40 60 80 100
Distance to surface (nm) Distance to surface (nm)

(@) (b)

Figure 5.3: The sample depth into the material is shown on the x-axis of these two figures,
while the time delay is depicted on the y-axis. The two maps are plotted for the simulation
condition of Tb at 4.4 mJ/cm?. (a) The temperature map illustrates, that the surface of the
sample directly after excitation is heated by roughly 300 K. The sample becomes colder
towards the inside and it is cooling over time. (b) The strain map depicts the propagation
of acoustic waves inside the sample.

Directly after excitation, the Tb layer is hotter than the Y layer, because it has a
higher absorption, which is illustrated in figure 2.11 (b). Since the simulation is
based on a one-temperature-model, the excitation of the Tb layer remains highly
inhomogeneous, as hot electrons, which would contribute to a more homogeneous
distribution of energy within the layer, are not taken into account.
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Simulated strain transients of the Dy sample

The simulated transient strain of the Dy layer can be observed in figure 5.4. The
initial expansion in the first 10 ps, driven by the strain wave which traverses the Dy
layer, is well captured in both shape and amplitude. This is true for both excitation
fluences of 1.1 mJ/cm? and 3.4 mJ/cm?. The transition of the strain wave into the
Nb layer is also visible as a decline in the strain signal at around 15 ps, as it is
only partially reflected at the interface, which leads to a decline in the strain wave
amplitude. Between 20 ps and 30 ps the strain signal stays roughly constant, as
in this time span the reflected strain wave travels through the Dy layer with a
constant amplitude. When the second reflection at the surface happens, the phase
shifted reflected strain wave by 7 induces a contractive strain, that leads to a faster
decay of the Dy strain signal, which can be observed at around 35 ps.

Dy 1.1 mJ/cm?
Model 0.9 mJ/cm?
Dy 3.4 mJ/cm?
Model 3.8 m]/cm2
Nb 1.2 m]/cm2
Model 0.9 mJ/cm?
Nb 3.7 mJ/cm?
Model 3.7 mJ/cm?

Strain N (1073)

Delay (ps)

Figure 5.4: The strain amplitude and shape of the simulations of the Dy sample in the PM
phase (continuous line) matches the measurements (data points) with a high accuracy.

The Nb layer expands at around 20 ps, which matches the timing of the strain
wave that enters the Nb layer. A slight mismatch of the experimental data and the
modelling can be observed at the strain transients of the 3.7 mJ/cm?® Nb simulation.
The minima of the strain waves perfectly overlap, while the maxima are offset by
a few ps, which indicates that the literature sound velocity used for modelling is
slower than the measured sound velocity.
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Simulated strain transients of the Tb sample

The strain of the Tb layer and the Nb layer of the Tb sample, depicted in figure 5.5,
show a similar behaviour to that of the Dy sample. The initial expansion of the Tb
layer followed by the decline in strain wave amplitude, as well as the expansion
of the Nb layer at 20 ps, is also prominent in the Tb sample. The timings of the
strain maxima of the Tb signal are approximately 5 ps later than at the Dy signal.
This is because the Dy sample is thinner, which can be seen in table 5.1. Tb and Dy
have almost the same sound velocity which can be seen in table 5.3, as according
to Graff [44], for a transversely isotropic material, the velocity of sound along the
c-axis is given via v = 4/c33/p. A more detailed discussion can be found in ROYER
& Dieulesaint [45].

Tb 3.4 mJ/cm?
Model 2.5 mJ/cm?
Tb 5.1 mJ/cm?
Model 4.4 m]J/ cm?
Nb 3.6 m]/cm2
Model 2.1 rn]/crn2

Strain n (1073)

Delay (ps)

Figure 5.5: The shape of the simulations of the Tb sample in the PM phase (continuous
line) matches the measurements (data points) well in both the Tb and Nb layer.

Compared to the Dy sample, the Tb sample has slightly more deviations between
the transient strain measurements and the modelling. Especially in the modelling
of the 4.4 mJ/cm?, a second maximum becomes visible at 35 ps. This maximum
is pronounced far less in the experimental data. Since the timing of the second
maximum can be identified with the reflected strain wave shown in figure 5.3 (b)
at the Tb-Nb interface which reaches the surface of the sample, one can assume
this reflection to be less pronounced in the experiment compared to the simulation.
The reason why the strain wave is not reflected perfectly at the interface may be
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due to possible interface roughness or impurities, which would explain why the
measured data show a less pronounced second strain maximum. Another deviation
between the transient strain modelling and measurement is the fluence, which is
estimated lower in the modelling than measured in the experiment. The phononic
Griineisen parameters of Tb and Dy are very similar, as depicted in figure 4.5 (a),
which is why a similar transient strain would have been expected. This is why the
simulations predict a larger expansion of every layer at the given fluence, which
was not measured during the experiment. This lower expansion of the Tb layer
could also explain the less pronounced compression of the Nb layer due to the
overlying Tb layer earlier than 15 ps.

Simulated strain transients of the Gd sample

The qualitative behaviour of the transient strain of the Gd sample (figure 5.6) is
in line with that of the Tb and Dy samples, as the same sound dynamics can be
observed. A feature which was not present in the transient strain of the Tb and Dy
samples is the pronounced second maximum of the transient strain in the Gd layer.
This feature is also reproduced by the modelling.

2.5 T T T T

v Gd 3.4 mJ/cm?
Model 1.9 mJ/cm?
A Gd5.0 mJ/cm?
Model 3.3 mJ/cm?
v Nb3e m]/cm2
Model 1.6 m]/cm2

Strain N (1073)

0 10 20 30 40 50 60

Figure 5.6: The shape of the simulations of the Gd sample in the PM phase (continuous
line) matches the measurements (data points) well for the Gd layer but less well for the Nb
layer.

The fluence of the simulations is far lower to achieve the same transient strain
amplitude. The reason for that could be that the transient strain measurements
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were conducted close to the magnetic ordering temperature of Gd. Consequently,
energy can be deposited in the magnetic system which induces a negative thermal
expansion, since the magnetic Griineisen parameter of Gd is negative. Up to 25 ps,
the shape of the Nb strain is not predicted very accurately by the model, as a weaker
compression by the overlying Gd layer induces less pronounced sound dynamics in
the Nb layer. It seems that the Nb is already heated after 5 ps, which would suggest
a higher thermal conductivity of Gd compared to Tb and Dy. However, as shown
in Kog [46], Gd has a lower thermal conductivity than Dy.

Fluence comparison of the transient strains

Now the question arises why the Dy layer shows a larger strain than the Gd and
Tb layer normalised to the excitation fluence. According to table 5.3, the linear
thermal expansion of Dy is larger than for Tb and Gd. This does not fully explain
the observed behaviour, as the simulation already accounts for the larger linear
thermal expansion of Dy. While the simulation fluences align well with the Dy
measurements, they significantly underestimate the fluences of the Gd and Tb
samples.
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Figure 5.7: (a) The measured strain amplitude of Dy is the largest at a fixed fluence of
3.4m]J/cm?, followed by Tb and the Gd. (b) The excitation fluence for Gd and Tb has to be
increased to reach the strain amplitude Dy shows at a lower excitation fluence.

This indicates that the discrepancy in the strain amplitude between the samples is
caused by an experimental error of the measurements of the Gd and Tb sample,
e.g. a difference in fluence calibration. This is further supported by the fact, that
also the Nb layers in the different samples show different strain amplitudes at large
time delays for the same fluence, as already pointed out in figures 5.2 (b), 5.2 (d)
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and 5.2 (f). When all strain waves have propagated to the substrate, the strain
values should agree, since the Nb has the same linear thermal expansion in all three
samples. The differences in the strain amplitude could also indicate that the Gd
and Tb samples are oxidised, which could be why a higher fluence is necessary to
achieve the same strain. This is supported by the fact that the same strain amplitude
inconsistencies appear in the measurements of the ferromagnetic phase as well.
Both sources of error are equally likely, because the measurements of the Dy sample
were conducted 2 years before the measurements of the Gd and Tb sample and also
the samples are of different age. Besides the inconsistencies of the strain amplitude,
the shape of the strain is accurately captured by the simulations, which is shown
in figure 5.7.

Simulation parameters

The parameters used for the simulations can be found in table 5.3. The interfaces
between the layers of the sample are indicated as vertical dashed lines in figure 5.3.
The simulations have revealed that the layer thicknesses given in figure 2.1 are
not precise. The best simulation results were achieved with the layer thicknesses
presented in table 5.1.

Table 5.1: This table contains the layer thickness provided by the simulations opposing to
the layer thickness provided by the sample manufacturer.

layer proposed thickness simulated thickness
Gd sample

Y 10nm 8 nm
Gd 40 nm 44 nm
Nb 50 nm 54 nm
Tb sample

Y 10 nm 9nm
Gd 40 nm 43 nm
Nb 50 nm 54 nm
Dy sample

Y 10 nm 10 nm
Gd 40 nm 36 nm
Nb 50 nm 49 nm

Another relevant fact which concerns the simulation parameters is the [110] orient-
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ation of Nb. Since the toolbox is designed for 1D simulations, the elastic constants
must be adjusted to match the proper propagation direction. For that, the elastic
tensor C is changed in a way that it represents the elastic constants in the new
coordinate system, defined by a coordinate transformation of the basis vectors,
which corresponds to the [110] orientation. The old coordinate system consist of
the standard Cartesian basis vectors, represented as E:

1
E=|0
0

S = O

0
0l. (5.1)
1

The new coordinate system, denoted by E,y, is chosen to align with the [110]
direction, which is more convenient for the 1D simulation. It is defined by the
following transformation matrix:

1

L 1 9
V2o V2
Eiew=] O 0 1| (5.2)
I
V2o 2

In this new coordinate system one gets a new elastic tensor Cyey, Which entries can
be used directly for the 1D simulations. The new values can be found in table 5.2.

Table 5.2: This table contains the elastic constants of Nb in the new coordinate system
which align with the [110] direction.

c11 (GPa) c12 (GPa) c13 (GPa) ¢33 (GPa)
221.45 138.7 138.7 221.45

5.3 Ultrafast negative thermal expansion in the
ferromagnetic phase

The strain in the excited layer in the PM phase depends linearly on the fluence of
the pump laser pulse, which is not the case on the FM phase. In order to understand
the shape of the time-resolved strain of the rare earths in the FM phase, at least
a two-energy-model is needed, which differentiates the energy in the magnetic
subsystem from the energy in the electronic and phononic subsystem. Differences
in the demagnetisation timescales have been observed in Wietstruk et al. [11], while
Tb has the shortest, followed by Dy and then Gd. As discussed in section 5.2.2
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for the PM phase, at nominally the same excitation fluence, both expansion and
contraction in the Dy sample in the FM phase have larger absolute values than in
the Gd and Tb sample. The time-resolved strain measurements in the FM phase
were conducted 80 K below the magnetic ordering temperature of the respective
rare-earth material.

5.3.1 Transient energy dynamics in Gd

The characteristics of the time-resolved strain in Gd cooled to 220K (80 K below
Tc, ga), shown in figure 5.8 (a), are highly fluence dependent. At 1.4 m]J/cm?, no
significant initial expansion is observed, but a contraction, which is smaller than
for higher fluences. At 3.4 mJ/cm?, an initial expansion can be identified, followed
by a stronger contraction than at 1.4 mJ/cm?. The initial expansion at 5.9 mJ/cm?
is far more pronounced than for lower fluences, but the contraction does not get
stronger by the same amount. This indicates that the magnetic system is near its
saturation point, as no more energy can be deposited in the magnetic subsystem,
since it is already fully disordered.

Gd 1.4 mJ/cm? —— Nb 1.4 mJ/cm?
—— Nb 3.4 mJ/cm?

A

0 20 40 60 80 100 120 1000 2000 3000 4000 0 20 40 60 80 100 120 1000 2000 3000 4000
Delay (ps) Delay (ps)

(@) (b)

—— Gd 3.4 mJ/cm?

—— Gd 5.9 m]/cm2
0.5

Strain n (1073)
Strain ) (1073)

0.0

Figure 5.8: (a) The fluence series of the time-resolved strain signal of the Gd layer in
the ferromagnetic phase was measured at 220 K, which is approximately 80 K below the
literature value of Tc gg. (b) The Nb layer of the Gd sample shows positive strain.

The reason for the initial expansion at higher fluences is that more energy is de-
posited in the phononic than in the magnetic subsystem, which leads to a positive
strain below 20 ps. Therefore, a one-energy-model cannot fully explain the ob-
served behaviour of the strain of the Gd layer, as the ratio of the energy deposited
by the laser in the phononic and magnetic subsystem changes with the initial
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temperature and fluence. The excitation energy is transferred over time from the
phononic subsystem into the magnetic subsystem. Additionally, the energy of the
phononic system can be transferred into the substrate, which is not possible for
the magnetic system (von Reppert et al. [24]). This non-equilibrium was previously
observed by Kog et al. [28] and has now been measured with significantly higher
temporal resolution. The measurement at 1.4 mJ/cm?® shows no initial expansion,
which indicates that the stress of the phononic and the stress of the magnetic
system are nearly compensating each other. After 30 ps, however, a contraction
can be observed, as the energy transport into the magnetic subsystem and the
resulting demagnetisation takes place on at least two different timescales, which is
in agreement with timescales measured in XMCD experiments on Gd by Wietstruk
et al. [11]. The strain of the Nb layer, depicted in figure 5.8 (b), remains positive
throughout the whole delay interval, as the expansion of the Gd layer does not
significantly compress it. At a fluence of 5.9 mJ/cm?, the Gd layer is expected to
compress the Nb layer because of its higher strain amplitude. As in the PM phase,
the positive strain in the Nb layer is driven by regular thermal expansion and is
proportional to the excitation fluence.

5.3.2 Invar behaviour of Tb
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Figure 5.9: (a) The fluence series of the time-resolved strain signal of the Tb layer in
the ferromagnetic phase was measured at 140 K, which is approximately 80K below the
literature value of T¢ 1p. (b) The Nb layer of the Tb sample shows positive strain at both
140K and 170 K.

In contrast to the Gd layer, the strain of the Tb layer, measured 80 K below Tt Ty
(140K) and shown in figure 5.9 (a), exhibits a less pronounced initial expansions,
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even at high excitation fluences. This is due to the faster second demagnetisation
timescale of Tb compared to Gd. It is also apparent that the magnetic system of Tb
is not saturated when it is excited with 5.9 mJ/cm?, because the contraction there is
still much larger than at 3.4 mJ/cm?. Interestingly, there is almost no contraction nor

expansion at 1.4 mJ/cm?, which is unexpected in such a time-resolved experiment,

as the material shows an invar behaviour, i.e. minimal expansion or contraction
after excitation. The reason for that is illustrated in figure 5.10.
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Figure 5.10: (a) The short horizontal yellow arrow at a starting position of 140K indicates
the excitation energy of 1.4 mJ/cm?. This leads to almost no transient strain. (b) The
long horizontal orange arrow indicates the excitation energy of 2.8 mJ/cm? with a starting
position at 140 K. This leads to a transient strain of almost 1%.. (c) The same transient
strain can be met with an excitation energy of 1.4 mJ/cm? starting at 170K, indicated by

the short red horizontal arrow. (d) Increasing the fluence or heating can therefore yield
the same transient strain result!

The strain of the Nb layer of the Tb sample in figure 5.9 (b) behaves similarly to
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the Nb layer of the Gd sample, as it expands after excitation. The excitation with
5.9 m]J/cm? is not enough to induce a compression of the Nb layer, because the initial
expansion of the Tb layer is damped by the fast negative stress contribution of the
magnetic subsystem. The measured time-resolved strain signals of the Tb layer
for 2.8 mJ/cm? at 140K and 1.4 mJ/cm? at 170K are very similar. The quasi-static
temperature-resolved strain measurements presented in the previous chapter 4
give a prediction on how strong the strain should change in equilibrium. Near
equilibrium, every excitation fluence corresponds to a horizontal arrow length in
the figures 5.10 (a) to 5.10 (c), because a higher excitation fluence would lead to more
heating in the sample. In the case of figure 5.10 (a), no significant strain is expected,
because the quasi-static strain at 140 K is very similar to the quasi-static strain
at 170 K. When an excitation fluence of 1.4 mJ/cm? is identified with an average
short term heating of 30 K, no significant strain in the time-resolved measurements
is expected. This is exactly the case, as the strain at 1.4 mJ/cm? at 140K shows
very little strain. Following this line of reasoning, it should be possible to achieve
the same strain result for a high fluence excitation at low temperatures and a low
fluence excitation at higher temperatures, because the horizontal arrows end at the
same spot. Exactly that is shown in figures 5.10 (b) and 5.10 (c). It is evident from
figure 5.10 (a) that their strain is in fact very similar.

5.3.3 Magnetostriction in Dy
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Figure 5.11: The fluence series of the time-resolved strain signal of the Dy layer in the fer-
romagnetic phase was measured at 100 K, which is approximately 80 K below the literature
value of Ty, py. The Nb layer of the Dy sample shows positive strain.



Ultrafast negative thermal expansion in the ferromagnetic phase

The strain of the Dy layer 80K below Ty, py (100K), shown in figure 5.11 (a),
is qualitatively similar to the strain of the Gd and Tb layer. The timescale of the
demagnetisation in Dy seems to be in between of the of Gd and Tb, which is revealed
by the comparison of the three materials at the same fluence in figure 5.12 (a).

5.3.4 Comparison of the demagnetisation timescales

The second timescales of demagnetisation can be well identified in figure 5.12 (a).
The comparison of the measurements conducted at the same fluence of 3.4 mJ/ cm?,
80 K below the respective magnetic ordering temperature provides the result that
the second demagnetisation in Tb is the fastest, followed by the Dy and then Gd.
An increase in the fluence (see figure 5.12 (b)) shows that the largest fraction of
the energy distributed into the magnetic subsystem occurs on the second timescale
of demagnetisation. This results in NTE, as the magnetic Griineisen parameter
|F mag| > |F ph0|. An initial expansion driven by the phononic subsystem is observed
at high excitation fluences, as the second timescale of the demagnetisation only
starts at approximately 15 ps.
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Figure 5.12: (a) The comparison of the demagnetisation timescales of Gd, Tb and Dy at
3.4m]J/cm? shows that Tb seems to have the shortest timescale of demagnetisation, followed
by Dy and then Gd. (b) The larger initial expansion of the Gd layer at a higher fluence of
5.9 mJ/cm? also indicates that less energy is transferred into the magnetic subsystem.

The timescale of the demagnetisation in Tb is on the order of magnitude of 10 ps,
while the demagnetisation of Dy is slower, with more than 20 ps. Gd has the slowest
demagnetisation of these three rare-earth materials, with a timescale of around
50 ps. This is in agreement with the results of Wietstruk et al. [11], where a second
demagnetisation timescale of 8 ps for Tb and 40 ps for Gd is estimated.
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Table 5.3: The simulation parameters were taken from Haynes [37], unless stated otherwise.

property Gd Tb Dy
crystal lattice structure hcp hcp hcp
c-axis out-of-plane (A) 5.7810 5.6966 5.6501
a-axis in-plane (A) 3.6336 3.6055 3.5915
b-axis in-plane (A) 3.6336 3.6055 3.5915
density p (g/cm?®) 7.901 8.230 8.551
lin. therm. expansion a; (107%/K) 10.0 124 15.6
lin. therm. expansion a; (10°%/K) 9.1 9.3 7.1
heat capacity c, at 25 °C (J/(kg K)) 236 182 173
therm. conductivity x (W/(m K))*  10.8 [47]  14.8 [47] 11.7 [47]
refractive index n + ik from [48] from [48]  from [48]
n 1.99 2.36 2.68

k 3.30 3.21 3.21
elastic constants at 300 K (GPa) from [38] from [39] from [39]
c13 21.3 22.99 22.3
C33 71.9 72.25 78.1
property Y Nb Al,05
crystal lattice structure hcp bee [1] hcp
c-axis out-of-plane (A) 5.7318 4.67 [1]  12.9933 [49]
a-axis in-plane (A) 3.6482 4.67 [1]  4.7602 [49]
b-axis in-plane (A) 3.6482  3.30[1]  4.7602 [49]
density p (g/cm®) 4.469 8.57 3.97
lin. therm. expansion a,; (107/K) 19.7 6.8 [50] 7.07 [51]
lin. therm. expansion g (107%/K) 6.0 6.8 [50] 6.2 [51]
heat capacity c, at 25 °C (J/(kg K)) 298 265 657.22 [52]
therm. conductivity k (W/(m K))*”  24.8 [47] 53.7[47]  58.33 [53]
refractive index n + ik from [48] from [48]  from [37]
n 2.10 2.15 1.76

k 2.67 3.37 0
elastic constants at 300 K (GPa) from [54] from [55] from [56]
C13 21 138.7 116

c33 76.9 245.6 501

@ All values were taken at 300K, except for Yttrium, which was taken at 160 K.
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Conclusion

Quasi-static and transient strain measurements at the thin-film rare-earth metals Gd,
Tb and Dy have been conducted. The temperature-resolved strain measurements

in the range of 50 K to 385 K were carried out at BESSY II utilising X-ray diffraction.

It was shown that the thin-film rare-earth metals Gd, Tb and Dy exhibit negative
thermal expansion below their magnetic ordering temperature. Quasi-static strain
measurements allowed for the extraction of both phononic and magnetic Griineisen
parameters. The extracted magnetic Griineisen parameter of Dy has a constant

value of I'mae py = —3.1, while the value is temperature-dependent for Gd and Tb.

For Gd, a magnetic Griineisen of I1,5 g4 = —2.5 was determined between 220 K and
320 K. The magnetic Griineisen parameter of Tb is estimated to be Iiyag, T = —2.7
between 170 K and 220 K. These values are of slightly higher magnitude compared

to Kog et al. [28], because I took the anisotropy of the elastic constants into account.

If T adjusted the phononic Griineisen parameter to the high temperature limit, this
discrepancy would be amplified further.

I observed ultrafast time-resolved magnetostriction in thin-film rare-earth metals at
our laboratory based plasma X-ray source and utilised the techniques of reciprocal

space mapping and reciprocal space slicing, including a transient RSS correction.

Picosecond strain dynamics and non-equilibrium energy transport on a nanosecond
timescale have been determined via the transient strain measurements, which I
also simulated with the udkm1Dsim toolbox (Schick [41]). I observed ultrafast
NTE, 80K below the magnetic ordering temperature of Gd, Tb and Dy. With
the highest excitation fluences, the Gd layer showed a saturation of the magnetic
subsystem, as no further energy could be deposited in the fully disordered spin
system. In contrast, Tb showed no saturation and for Dy, no such measurements
were conducted. The delayed laser-induced contraction of Gd indicates a slower
demagnetisation compared to Tb and Dy. The demagnetisation timescale of Tb
is around 10 ps, the demagnetisation timescale of Dy is slower than 20 ps, and
the demagnetisation timescale of Gd is roughly 50 ps. Of special interest is the
ultrafast invar behaviour of the strain of the Tb layer, under the condition of a
certain excitation fluence and starting temperature. When the Tb layer is excited
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with 2.8 mJ/cm? at a starting temperature of 140K, it yields approximately the same
strain as an excitation with 1.4 mJ/cm? at 170 K. If the Tb layer is excited with
1.4mJ/cm? at 140K, essentially zero expansion is measured, i.e. we observe an
ultrafast invar effect, where the rare earth is heated, but the energy does not lead
to any stress or strain.

Outlook

In addition to the quasi-static strain measurements presented in chapter 4, temperature-
resolved strain measurements at the Gd and Tb layer were performed with an
applied external 140 mT in-plane magnetic field. The magnetic field should raise
the Curie temperatures of Gd and Tb, as the magnetic order can be maintained up to
higher temperatures. The results of these measurements are depicted in figure 6.1

v —v— GdnoB-field | | \ Tb no B-field
ol Gd with B-field | 74 *°f ‘ Tb with B-field |
I 19 ‘
S 0.5 S 0.5
- 04 - 04
< s A S
g k=
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N 4, 9 01
0.0 [ 0.0

. . . . . . . . . .
260 280 300 320 340 360 200 220 240 260 280 300

Temperature (K) Temperature (K)
(a) (b)

Figure 6.1: (a) A possible forced magnetostrictive effect below the magnetic ordering
temperature of the 40 nm thin-film Gd has been found when an external 140 mT magnetic
field is applied. (b) The quasi-static strain data for the Tb layer has a signal-to-noise ratio
that is too low to make a reliable statement about the effect of forced magnetostriction.

The forced magnetostrictive effect could not be confirmed yet, because the temperature-
resolved strain measurements of the Gd and Tb layer with and without an applied
external magnetic field provide very similar results. In figure 6.1 (a), the strain
decreases at a few Kelvin higher temperatures, when an in-plane magnetic field

is applied, but above the magnetic ordering temperature, no clear trend can be
identified. In order to achieve a more significant effect, a stronger external in-plane
magnetic field would be needed to verify the effect of forced magnetostriction.
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Another open question is why the magnetic strain behaves differently in Gd, Tb
and Dy. The magnetic strain was already quantified by Kittel [57], who presented
equation (6.1):

i = 5 M cos (9) ~ 2. (6.1)
Here, r is the inter atomic distance which is not necessarily the atomic distance
out-of-plane, Y is Young’s modulus and M is the magnetisation. The magnetic
strain 7. is proportional to the change of the exchange coefficient J(r), which
can be described by the RKKY interaction (see section 2.1). The exchange coefficient
and its derivative in respect to r for Gd, Tb and Dy is illustrated in figure 6.2.
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Figure 6.2: The exchange coefficient J(r) has been calculated, under the assumption of a
spherical Fermi surface with the radius kr.

The calculated exchange coefficients for Gd, Tb, and Dy are very similar, and so
are their derivatives. This is based on the assumption that the Fermi surfaces are
perfect spheres, which is not the case in reality. The Fermi radius kr was calculated
via:

kp = (371271)%. (6.2)

n is the electron number density, which is similar for all three rare earths. In a first
approximation, the differences in dJ/dr do not appear to account for the variation
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in magnetic strain. However, a more accurate representation of the actual Fermi
surfaces could alter this conclusion. According to equation (6.1), the magnetic strain
Tmag 1S also proportional to M?, which is different for Gd, Tb and Dy. Equation (6.1)
also does not account for nearest neighbour interactions, which at least for Dy have
to be relevant, as it is a helical antiferromagnet. To address these uncertainties,
a valuable next step would be to model the ultrafast transient strain below the
magnetic ordering temperatures of Gd, Tb, and Dy. Simulations of this kind have
already been conducted for Dy by von Reppert et al. [24]. The modelling for Gd
and Tb proved to be a challenge, as the magnetic Griineisen parameters for these
materials are not constant. A possible solution is to approximate the magnetic
Griineisen parameter with two linear functions.
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