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0Abstract
This thesis investigates and compares the lattice response of 40 nm rare-earth thin-

film heterostructures upon femtosecond optical excitation at temperatures above

and below the magnetic ordering temperatures in Gd, Tb and Dy. Ultrafast X-ray

diffraction at our laboratory-based plasma X-ray source is employed, which reveals

the strain dynamics on a picosecond timescale, as well as thermal expansion and

heat conductivity on a nanosecond timescale. In the paramagnetic phase above

the magnetic ordering temperature, a conventional metallic expansive response

is observed, as the excitation energy is deposited in the electronic and phononic

subsystem. Below the magnetic ordering temperature, the coupling between the

magnetic subsystem and the lattice leads to a competition between the expansive

stress from electrons and phonons and the contractive stress from spin excitations.

This results in negative thermal expansion, observed in Gd, Tb, and Dy below

their respective magnetic ordering temperatures, which was revealed using X-ray

diffraction at the KMC-3 XPP endstation at BESSY II. This magnetostrictive effect

can be attributed to the indirect RKKY interaction, which occurs in Gd, Tb and Dy.

To separate the stress contributions of the three subsystems on an ultrafast timescale,

the thermal lattice expansion and heat capacities of Gd, Tb, and Dy in equilibrium in

terms of an extended Grüneisen model are investigated. The Grüneisen parameters

of the phononic and magnetic subsystems in terms of a three-energy-model were

determined, which allows the extraction of the time-dependent energy distribution

and driving stresses. The results are in agreement with the modelled strain response

via a linear-chain-model in the paramagnetic phase with a one-energy-model.

However, the magnetic Grüneisen parameters of Gd and Tb turned out to be

temperature-dependent, which reveals the limitations of the Grüneisen modelling.

This temperature-dependence yields intriguing effects, as for the Tb layer, an

ultrafast invar behaviour of the strain response has been observed under certain

excitation conditions. The delayed laser-induced contraction of Gd indicates a

demagnetisation on a timescale of 50 ps, which is slower compared to Tb and Dy,

which have a demagnetisation timescale of approximately 8 ps and 20 ps respectively.

These findings align closely with recent femtosecond X-ray magnetic circular

dichroism (XMCD) results.
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0Kurzdarstellung
In dieser Arbeit wird das Verhalten von 40 nm dünnen Schichten Seltener Erden

nach einer optischen Anregung mit Femtosekunden-Laserpulsen oberhalb und

unterhalb der magnetischen Ordnungstemperaturen in Gd, Tb und Dy betrachtet.

Mit Hilfe ultraschneller Röntgenbeugung an einer Laser-getriebenen Plasmarönt-

genquelle lassen sich die Ausdehnungsdynamiken im Pikosekundenbereich, sowie

die thermische Ausdehnung und Wärmeleitfähigkeit im Nanosekundenbereich

untersuchen. In der paramagnetischen Phase oberhalb der magnetischen Ordnungs-

temperatur wird eine konventionelle metallische Expansion beobachtet, da die

Anregungsenergie dem elektronischen und phononischen Teilsystem zugeführt

wird. Die Kopplung des magnetischen Teilsystems mit dem Gitter führt unter-

halb der magnetischen Ordnungstemperatur zu einem Entgegenwirken der durch

Elektronen und Phononen getriebenen Gitterausdehnung. Daraus resultiert eine ne-

gative thermische Ausdehnung, die in Gd, Tb und Dy unterhalb ihrer magnetischen

Ordnungstemperatur mittels Röntgenbeugung am BESSY II nachgewiesen wur-

de. Dieser magnetostriktive Effekt kann auf die indirekte RKKY-Wechselwirkung

zurückgeführt werden, die in Gd, Tb und Dy auftritt.

Um die Druckbeiträge der drei Teilsysteme auf einer ultraschnellen Zeitskala zu

separieren, werden die thermische Ausdehnung und die Wärmekapazitäten von Gd,

Tb und Dy im Gleichgewicht im Rahmen eines erweiterten Grüneisenmodells unter-

sucht. Die Grüneisenparameter der phononischen und magnetischen Teilsysteme

wurden im Rahmen eines Drei-Energie-Modells bestimmt, mit dem die zeitabhän-

gige Energieverteilung und die treibenden Drücke separiert werden können. Die

Ergebnisse stimmen mit der simulierten Ausdehnung in der paramagnetischen

Phase unter Verwendung eines Ein-Energie-Modells überein. Allerdings erwiesen

sich die magnetischen Grüneisenparameter von Gd und Tb als temperaturabhängig,

was die Grenzen der Grüneisenmodellierung aufzeigt. Diese Temperaturabhän-

gigkeit führt zu verblüffenden Effekten, da für die Tb-Schicht unter bestimmten

Anregungsbedingungen ein ultraschnelles Invar-Verhalten der Ausdehnung beob-

achtet wurde. Die verzögerte laserinduzierte Kontraktion von Gd deutet auf eine

Demagnetisierung auf einer Zeitskala von 50 ps hin, was im Vergleich zu Tb und

Dy, die Demagnetisierungszeitskalen von ungefähr 8 ps bzw. 20 ps aufweisen, lang-

samer ist. Dies steht im Einklang mit durch XMCD gewonnenen zeitgenössischen

Ergebnissen.
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0Abbreviations
Table 1: This table contains all abbreviations used in this thesis in alphabetical order.

Abbreviation Meaning

AFM helical antiferromagnetic

Al2O3 sapphire

Dy dysprosium

FM ferromagnetic

fs femtosecond

Gd gadolinium

Ho holmium

LASER light amplification by stimulated emission of radiation

LTE linear thermal expansion

Lu lutetium

Nb niobium

NTE negative thermal expansion

PM paramagnetic

ps picoseconds

PXS plasma X-ray source

RKKY Ruderman-Kittel-Kasuya-Yosida

RSM reciprocal space map

RSS reciprocal space slice

Tb terbium

Ti:Sa titanium-sapphire

UXRD ultrafast X-ray diffraction

XMCD X-ray magnetic circular dichroism

XRD X-ray diffraction

Y yttrium
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1 Introduction

The concept of the atom, as the smallest indivisible unit of matter, traces back to the

ancient Greeks. Philosophers such as Democritus theorised that everything in the

universe was composed of these fundamental building blocks. Although these ideas

lacked the empirical evidence to prove their existence, they laid the foundation

for centuries of scientific investigation. Over 2400 years later, our understanding

of atomic particles has led to groundbreaking technological advancements. The

study of the properties of various elements gained crucial insights into electronic

behaviour, lattice vibrations, and magnetism, which drive modern technology.

One of them was the discovery of the giant magnetoresistance effect by Peter

Grünberg and Albert Fert, for which they were awarded the Nobel Prize in Physics

in 2007. Their pioneering work in this field revolutionised data storage technology,

which lays the foundation for highly efficient read-write heads in hard disk drives.

The application of the giant magnetoresistance effect enabled the development of

gigabyte-scale hard drives, which are now an essential part of modern life (Gross

& Marx [1]). Another recent breakthrough in data storage is the technique of heat

assisted magnetic recording (HAMR), which uses lasers to briefly heat the magnetic

data storage medium. This allows for data storage with higher density without

the sacrifice of stability or speed. Data storage technologies often face a trilemma:

balancing stability, speed, and high data density. The enhancement of one aspect

may come at the cost of another. For example, increasing data density can lead to

reduced stability, while improving speed may affect the long term data preservation

(Wood [2]).

Our research group has conducted numerous experiments on ultrafast magneto-

striction, primarily in dysprosium (Dy) and holmium (Ho) ([3–6]), while other

research groups have explored magnetostriction in different materials ([7–10]).

These observed ultrafast processes are particularly relevant for the increasingly

fast-paced demands of data processing. The goal of this thesis is to analyse the

rare-earth metals gadolinium (Gd) and terbium (Tb) and compare their ultrafast

magnetostriction to Dy. Different demagnetisation time-scales of those materials

have already been observed ([11–13]).

My thesis is divided into two parts. Part I covers the fundamentals of magnetostric-

tion in chapter 2, such as the RKKY interaction and the three-energy-model, and the
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Chapter 1 Introduction

underlying theory to understand ultrafast X-ray diffraction (UXRD) in chapter 3.

UXRD is the utilised technique to resolve the motion of atoms in a crystalline

arrangement, which our research group has optimised (Zamponi et al. [14] and
Schick et al. [15]). Part II of my thesis focuses on the experimental results. The

temperature-resolved experiments of the Gd, Tb and Dy thin-films, carried out at

the KMC-3 XPP endstation at BESSY II, are presented in chapter 4, with the result

of extracted Grüneisen parameters for Gd, Tb and Dy. Time-resolved experiments

at the same materials were conducted at our laboratory based plasma X-ray source,

which is introduced in chapter 5. I showed that Gd, Tb and Dy all exhibit negative

thermal expansion below their magnetic ordering temperature.

2



Part I

Fundamentals





2 Models of magnetostriction

Spontaneous magnetostriction is the expansion or contraction of the crystal lattice as
a function of the magnetisation. This chapter will introduce the rare-earth materials,
which are subject to test in this thesis, as well as the concepts of magnetostriction. The
underlying models, such as the three-energy-model, which apply to these systems will
also be covered.

2.1 Magnetostriction in rare-earth metals
Rare-earth metals are known to exhibit giant magnetostriction ([3–6]). The three

samples analysed in this thesis are depicted in figure 2.1. Those three hetero-

structures are related, as they are structurally the same. Only the 40 nm thin-film

rare-earth layer differs in the rare-earth element: gadolinium (Gd), terbium (Tb), or

dysprosium (Dy). The samples are therefore labelled accordingly as Gd sample, Tb

sample, and Dy sample. Each sample has a 10 nm yttrium (Y) capping layer on top,

followed by the respective rare-earth layer. Below that, a 50 nm niobium (Nb) layer

is present, which is located on top of a 1mm thick sapphire (Al2O3) substrate. The

Yttrium layer on top prevents oxidation of the rare-earth layer, while the Nb layer

functions as a buffer layer during the growth and as a detection layer for ultrafast

strain, as described in Mattern et al. [5].
The magnetostriction of the rare-earth layer can be measured as a function of the

temperature and as a function of the time-delay between the pump and the probe

pulse, which is described in section 5.1. During the quasi-static measurements, the

change of the distance between the rare-earth atoms along the 𝑐-axis is recorded

temperature-dependently. The top of each sample is the Y layer, which corres-

ponds to the direction from which the samples are excited by a laser pulse when

time-resolved measurements in terms of a pump-probe experiment are conducted

(section 5.1). Two exemplary experimental results of magnetostriction are illus-

trated in figure 2.2. Figure 2.2 (a) depicts the temperature-resolved distance of the

lattice planes, which corresponds to the 𝑐-axis of the hexagonal crystal structure.

The usually expected behaviour of linear thermal expansion (LTE) is interrupted

between roughly 150 K and 250 K, which is due to magnetostriction. Figure 2.2 (b)

shows the time-resolved development of the 𝑐-axis after laser excitation. For a

5



Chapter 2 Models of magnetostriction
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Figure 2.1: These samples were manufactured by Karine Dumesnil, Institut Jean Lamour,

Université Lorraine, Nancy. (a) shows the structure of the Gd sample, (b) depicts the

structure of the Tb sample, and (c) illustrates the structure of the Dy sample.

selected starting temperature in the ferromagnetic (FM) phase, laser-induced spon-

taneous magnetostriction can be observed as an ultrafast contraction along the

𝑐-axis. This is not the case if the starting temperature lies in the paramagnetic (PM)

phase.
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Figure 2.2: (a) The interrupted thermal expansion of the 𝑐-axis between 150 K and 250 K

is depicted temperature-resolved. (b) The time-resolved change of the 𝑐-axis depends on

whether Tb is paramagnetic or ferromagnetic.
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Magnetostriction in rare-earth metals Section 2.1

In general, a distinction is made between different types of magnetostriction. If

magnetostriction occurs due to a change in temperature, e.g. upon laser excitation,

this is named spontaneous magnetostriction or just magnetostriction. This is the type

of magnetostriction mainly discussed in this thesis. When an external magnetic

field is applied to a sample, that can lead to forced magnetostriction, which is another
form of magnetostriction. This will be mentioned briefly in chapter 6. The main

mechanism of magnetostriction in rare earths is exchange striction mediated by

an indirect RKKY interaction, as presented in section 2.1. Another mechanism of

magnetostriction is anisotropy striction, presented in section 2.1, which is not the
main mechanism in rare-earth metals but can possibly still explain why various

rare earths exhibit different magnetostrictive behaviours.

RKKY exchange interaction

As the magnetic moments of the rare earths are carried by the 4f-electrons whose

orbitals have practically no overlap, an indirect mechanism of exchange is necessary,

which then mediates the exchange striction. This indirect interaction is entitled

as RKKY interaction, named after Malvin Avram Ruderman, Charles Kittel, Tadao

Kasuya and Kei Yosida. The coupling is realised via conduction band electrons, as

the magnetic moments orient the spin of the conduction band electrons, which

in turn orient the magnetic moments of the neighbouring ions (Hunklinger [16]).

According to Skomski [17], the RKKY interaction is proportional to

𝐽 (𝑟 ) ∼ sin (2𝑘𝐹𝑟 ) − 2𝑘𝐹𝑟 cos (2𝑘𝐹𝑟 )
(2𝑘𝐹𝑟 )4

, (2.1)

where 𝑘𝐹 is the Fermi vector, 𝑟 is the distance between neighbouring ions and 𝐽 is

the exchange coefficient. In the Heisenberg model, according to Gross & Marx [1],

the spin-dependent HamiltonianH can be expressed as:

H = −
∑︁

𝑗≠𝑖,𝑖> 𝑗

𝐽𝑖 𝑗
1

ℏ2

®𝑆𝑖 · ®𝑆 𝑗 . (2.2)

The distance-dependent exchange coefficient 𝐽 (𝑟 ) is illustrated in figure 2.3. This

implies that the state of the spin system is directly connected to the distance

of the ions, which can lead to magnetostrictive effects. If 𝐽 (𝑟 ) > 0, then the

vectors ®𝑆𝑖 and ®𝑆 𝑗 of the neighbouring spins 𝑖, 𝑗 are aligned parallel, which leads to

a ferromagnetic material. If 𝐽 < 0, the vectors are aligned antiparallel, which leads

to an antiferromagnetic material. In some cases, the material becomes a helical

antiferromagnet, which will in the following be referred to as AFM. This is the

7



Chapter 2 Models of magnetostriction
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Figure 2.3: The amplitude of the RKKY interaction is distance-dependent. ±𝑥−3
depicts

the enveloping function with 𝑥 = 2𝑘𝐹𝑟 .

case for Dy, as illustrated in figure 2.4. The relation between the conventional

antiferromagnetic structure and the helical antiferromagnetic structure becomes

evident in the two-dimensional projection of the spin spiral, which is also shown

in figure 2.4.

Anisotropy striction

According to Engdahl [19], 4f-electrons have a strong spin-orbit coupling, which

means that the spin of a 4f-electron is firmly attached to the corresponding elec-

tronic cloud. This spin moment is illustrated as ®𝑚 in figure 2.5. In a crystal

lattice at rest, the magnetic moment points into a certain direction, defined by

the neighbouring positively charged nuclei. This tendency of the magnetic mo-

ment to point into a preferred direction, because the Coulomb forces from neigh-

bouring ions act on the non-spherical orbital hosting the spin, is called mag-
netocrystalline anisotropy. If the distance between these nuclei changes, con-

sequently the electron orbital may change and thus tilt the direction the mag-

netic moment points to. This is also true in reverse, as the application of an

external magnetic field can rotate the magnetic moment and consequently the

electron orbit, which would therefore change the distance between the nuclei.

8



Magnetostriction in rare-earth metals Section 2.1

Figure 2.4: Between the Curie and the Néel temperature, the structure of Dy is helical

antiferromagnetic. The periodicity of the spin spiral with the length 𝑠 does not necessarily

need to resemble the periodicity of the lattice. Source: Ott [18]

9



Chapter 2 Models of magnetostriction

Figure 2.5: The electronic orbital rotates due
to an external magnetic field, which changes

the position of the positive nuclei. Source:

Engdahl [19]

This invoked change of the distance

of the lattice planes is called aniso-

tropy striction. The model of aniso-

tropy striction only predicts an im-

pact on the lattice, if the electron or-

bital that carries the magnetic mo-

ment is non-spherical. In Gd, the 4f-

orbital is exactly half filled as shown

in table 2.1, which leads to a spher-

ical orbital form (Gross & Marx [1]).

This illustrates nicely why aniso-

tropy striction is likely not the main

reason for magnetostriction in rare-

earth materials, because the other

rare earths exhibit spontaneous mag-

netostriction with a similar strength

as observed in Gd. In these materi-

als, the magnetic moments are carried

by 4f-electrons, whose wave function

overlap is small due to their proxim-

ity to the nucleus (Hunklinger [16]). This is true for the elements Gd, Tb and

Dy, as they are neighbours in the periodic table of elements. Their electronic

configurations are therefore similar, as depicted in table 2.1.

Table 2.1: This table contains the electronic configuration of Gd, Tb and Dy according to

Ott [18] and the angular momenta S4f, L4f and J4f of corresponding the 4f-orbital. In Gross

& Marx [1], this (5d6s)
3
hybridisation is not used.

element configuration S4f L4f J4f
Gd [Xe]4f

7
(5d6s)

3
7/2 0 7/2

Tb [Xe]4f
8
(5d6s)

3
3 3 6

Dy [Xe]4f
9
(5d6s)

3
5/2 5 15/2

2.2 Lattice dynamics
This section 2.2 will introduce the three-energy-model (3EM) in section 2.2.1, which

leads to an extended Grüneisen model and will be applied to the linear-chain-model

10



Lattice dynamics Section 2.2

in section 2.2.2. The Grüneisen modelling of the quasi-static strain data will be

carried out in chapter 4, while the linear-chain-model is used to perform transient

simulations of the time-resolved strain measurements, which are discussed in

chapter 5.

2.2.1 Three-energy-model
The three-energy-model assumes the lattice of a solid to be impacted by the elec-

tronic, phononic and magnetic subsystem, illustrated in blue, orange and green in

figure 2.6 respectively.

Figure 2.6: The three-energy-model describes the impact of the electronic, phononic and

magnetic subsystem on the lattice. The subsystems interact with each other and have their

own heat capacity 𝐶 . Source: Mattern et al. [5]

Initially after excitation indicated by the red laser pulse, the electronic subsystem

is heated, as the electrons interact with the oscillating electromagnetic field of the

laser pulse. An excitation of electrons raises their energy over the Fermi energy,

which is illustrated in the pictogram in the blue box. The electronic system can

now transfer its energy to the phononic subsystem and to the magnetic subsystem

via the corresponding electron-phonon or electron-spin coupling. The efficiency

11



Chapter 2 Models of magnetostriction

of this transfer depends on the coupling constants, which are depicted as grey

arrows in figure 2.6. The phononic subsystem and the magnetic subsystem can

also interact, with an efficiency given by the phonon-spin coupling. An excitation

of the phononic system induces lattice vibrations, as illustrated in the pictogram

in the orange box. The green box shows the excitation of the magnetic system by

disordering the magnetic moments. A distinct temperature 𝑇 is assigned to each of

the three systems immediately after excitation, which will equilibrate over time.

Every subsystem has a different energy reservoir, which exerts a pressure on the

lattice quantified by the stress 𝜎 . The stress has the dimensions of an energy density,

which is equivalent to a pressure. The stress is given by:

𝜎𝑖 = 𝛤𝑖𝜌𝑖 . (2.3)

The dimensionless proportionality constant between the stress 𝜎 and the energy

density 𝜌 is the Grüneisen parameter 𝛤 . Each of the three subsystems can influence

the interatomic distance 𝑐 between the layers of the lattice of the solid. The relative

change of the layer distance

𝜂 =
𝑐 − 𝑐0

𝑐0

(2.4)

is entitled as the strain 𝜂. The stress and the strain are related via Hooke’s law:

𝜎 = 𝑐𝜂. (2.5)

When referring to strain, it specifically denotes the out-of-plane strain in this thesis,

which is why the elastic constant 𝑐 is often represented as 𝑐33. The separation of

the stress contribution of every subsystem on the lattice is captured in an extended
Grüneisen model. Thus, an individual Grüneisen parameter is assigned to each

subsystem.

In a three-temperature-model, each subsystem is assigned a distinct temperature,

which indicates that they have not yet reached equilibrium and thus not share

a common temperature. However, even when the temperatures are equal, the

subsystems still possess three distinct energies, as each subsystem has a different

energy density at the same temperature. Since energy density is proportional

to stress, I will refer to this model as a three-energy-model, rather than a three-

temperature-model, throughout this thesis. The energy densities are related to the

heat capacities via equation (2.6).

𝜌E(𝑇 ) =
∫ 𝑇

0

𝐶 (𝑇 ′) 𝑑𝑇 ′. (2.6)
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Lattice dynamics Section 2.2

If the heat capacity is given at a constant Volume 𝑉 , it is called 𝐶V, while when

given at constant pressure 𝑝 it is called𝐶p. For a non-zero linear thermal expansion

coefficient 𝛼 , the heat capacity at constant volume is always smaller than at constant

pressure because no volume work is done through expansion. The following

relation, taken from Gross & Marx [1], applies:

𝐶p −𝐶V = 𝑇𝑉𝐵𝛼2. (2.7)

Here, 𝑇 is the temperature, 𝑉 the volume and 𝐵 the bulk modulus, which can be

found in table 4.1. At room temperature,𝐶p −𝐶V has a magnitude of 10
−1

for solids.

Electronic heat capacity

In the Sommerfeld model (Hunklinger [16]), the electronic heat capacity is given

by:

𝐶ele

V
≈ 𝛾𝑇 . (2.8)

The values for the Sommerfeld coefficient𝛾 can be found in table 4.1. They are given

by the density of electronic states at the Fermi level. It should not be confused with

the fine-structure constant 𝛼 ≈ 1/137, which is sometimes also called Sommerfeld

constant. The linear increase of the electronic heat capacity with the temperat-

ure is plotted in figure 2.7 (a). The corresponding energy density is depicted in

figure 2.7 (b), which is the integral of the heat capacity according to equation (2.6) .
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Figure 2.7: (a) The electronic heat capacity increases linearly in temperature. (b) The

electronic energy density increases quadratic in temperature.

For the considered materials at 300 K, the energy density of the electronic system
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Chapter 2 Models of magnetostriction

ranges from 10 J/cm
3
to 25 J/cm

3
, which small compared to the phononic and

magnetic energy densities.

Phononic heat capacity

According to Gross & Marx [1], the phononic heat capacity is given by:

𝐶
pho

V
= 9𝑅

(
𝑇

𝛩𝐷

)
3
∫ 𝛩𝐷/𝑇

0

𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥 =

{
∼ 𝑇 3

, if 𝑇 ≪ 𝛩𝐷

3𝑅 , if 𝑇 ≫ 𝛩𝐷

. (2.9)

Here, 𝑅 = 𝑁𝐴𝑘𝐵 is the universal gas constant and 𝛩𝐷 is the Debye temperature.

The proportionality of 𝐶
pho

V
at low temperatures is called the Debye 𝑇 3

law. The

thermal energy 𝑘𝐵𝑇 at low temperatures can only excite vibrational quanta ℏ𝜔

within the linear acoustic phonon dispersion. The convergence of 𝐶
pho

V
at high

temperatures is the Dulong–Petit law. The limit of 3𝑅 originates from the three

possible vibration directions in three dimensions, which accounts for both potential

and kinetic energy contributions. Both the Debye 𝑇 3
law and the Dulong–Petit law

can be identified in figure 2.8 (a). The calculated heat capacities look very similar

for Gd, Tb, Dy and Lu, but a comparison of the corresponding energy densities in

figure 2.8 (b) reveals slight differences.
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Figure 2.8: (a) The phononic heat capacities are proportional to 𝑇 3
at low temperatures

and convergence against the limit of 3𝑅 at high temperatures. (b) Clearer distinctions

between the phononic heat capacities of the rare-earth materials become apparent, when

the phononic energy densities are compared.

At 300K, the phononic energy densities for the considered materials range from

300 J/cm
3
to 400 J/cm

3
. Well beyond the coupling time of the electronic and phononic
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subsystems, the phononic energy density is much larger than the electronic energy

density, which validates the idea of a two-energy-model.

Magnetic heat capacity

The magnetic heat capacity can be extracted from the total heat capacity. This is

done in section 4.3. The results are depicted in figure 2.9.
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Figure 2.9: (a) The magnetic heat capacities at constant pressure show a maximum at

the phase transition temperatures. (b) The plot of the magnetic energy density reveals

that even above the magnetic ordering temperature, small amounts of energy can still be

deposited into the magnetic system.

The heat capacity of the magnetic system can be approximated by the mean-field

theory. Here, the magnetisation𝑀 of a ferromagnet is given by the self-consistent

equation (2.10):

𝑀 (𝑇 ) = tanh

(
𝑀𝑇𝐶

𝑇

)
. (2.10)

The phase transition temperature 𝑇𝐶 marks the point where a ferromagnet trans-

itions to the paramagnetic state. In the case of a ferromagnet, this is known as the

Curie temperature and for antiferromagnets this temperature is called the Néel tem-

perature. Then𝑀 must be interpreted as the sublattice magnetisation. According

to Mattern et al. [20], the following relation applies to the magnetic heat capacity:

𝐶V ∼ 𝑀
𝜕𝑀

𝜕𝑇
. (2.11)
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Chapter 2 Models of magnetostriction

The magnetisation and the magnetisation multiplied by its derivative in respect

to the temperature is depicted in figure 2.10. Hence, the result of the mean field

model in figure 2.10 only provides a qualitative assessment of the magnetic heat

capacity. Therefore, for further analysis, experimental data were taken as shown in

figure 4.3.
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Figure 2.10: The qualitative magnetisation of a ferromagnet is described by the dark blue

line. The dashed light blue line indicates the qualitative behaviour of the magnetic heat

capacity.

2.2.2 Linear-chain-model
The linear-chain-model represents a solid as a one-dimensional chain of masses

and springs. A displacement of such a mass from the equilibrium position leads to

an oscillation of the chain. The resulting set of differential equations can be solved

numerically. When the solid is heated upon laser excitation, energy is imparted to

the system. In the paramagnetic state, this leads to an instantaneous compression

of the springs, as the added energy is modelled by inserted spacer sticks into the

linear chain, whose atoms cannot move instantaneously. The relaxation of the

springs causes an expansion of the linear chain as illustrated in figure 2.11 (a). The

amount of energy deposited in each chain, i.e. the length of the spacer sticks, is

given by an absorption profile, depicted in figure 2.11 (b). As the intensity of the

incident light decays exponentially according to the Lambert-Beer law, the springs
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Lattice dynamics Section 2.2

at the surface of the sample usually show the most pronounced contraction, i.e.

the longest spacer sticks are inserted. Therefore, the pressure which acts from

above on a mass in the linear-chain-model is larger than the pressure which acts

from below. This difference induces a compression wave that traverses through the

material. The reflection of this wave at the surface of the sample creates a bipolar

strain wave, where the expansive part is preceded by a contractive part (Mattern

et al. [5]). The LTE originates from the contributed energy density of the excitation

laser pulse, as implied by equation (2.3).
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Figure 2.11: (a) The linear-chain-model with one-dimensional masses and springs is

illustrated. The length of the red spacer sticks in the linear-chain-model depends on

the amount of energy deposited into the system, given by the absorption profile. (b) A

multilayer laser absorption profile of the Tb sample is depicted. The discontinuities in the

absorption profile originate from interfaces between different materials of the sample.

When thin-films are excited on ultrafast timescales, it has to be taken into consid-

eration that the laterally homogeneous excitation of the laser pulse prevents an

expansion of the thin-film in the in-plane directions. This leads to an enhanced ex-

pansion out-of-plane, described by a change of the Grüneisen parameter for purely

out-of-plane dynamics. This enhanced expansion is known as the Poisson effect. A
Poisson correction is therefore to be made, which can be quantified according to

von Reppert et al. [4]:
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Chapter 2 Models of magnetostriction

Poisson correction factor for 𝛤pho : 1 + 𝑐13

𝑐33

2𝛼∥
𝛼⊥

. (2.12)

Poisson correction factor for 𝛤mag : 1 −
𝑐2

13

(𝑐11 + 𝑐12)𝑐33

. (2.13)

The values to insert here are found in table 5.3. For the positive phononic Grüneisen

parameter 𝛤pho, the prevented in-plain expansion leads to a stronger out-of-plane

expansion. As will be discussed in section 4.5.4, the magnetic Grüneisen parameter

𝛤mag in Gd, Tb and Dy is negative. Accordingly, the absolute value of the mag-

netic Grüneisen parameter is decreased when the Poisson correction is applied,

because the out-of-plane contraction would require an expansion in-plane, which

is hindered.
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3 Scattering theory

This chapter will cover the fundamentals of scattering theory involved in ultrafast
X-ray diffraction (UXRD). This includes the basics of crystallography and structural
analysis. Of special importance is the concept of reciprocal space and the von Laue
condition, which is an observation condition for diffraction peaks to determine the
interatomic distance, i.e. the lattice constants. This chapter also covers the data
acquisition routine to evaluate the quasi-static and transient changes in the lattice
constant of materials. The sections 3.1 and 3.2 are adapted from Gross & Marx [1] and
Hunklinger [16].

3.1 Crystal structure
The periodically recurring structure of a crystal is called the basis. The number of

atoms in the basis depends on the examined material. The basis of most metals is

composed of one atom, while the basis of complex Protein crystals contains up to

10
4
atoms (Hunklinger [16]). Even if only one type of atom is present in a material,

the basis can still be diatomic, as in graphene. Every basis can be reduced to one

point in space. Those lattice points form a point lattice, but those points do not
necessarily have to be the locations of the atoms of the crystal.

An arbitrary point at the location ®𝑟 inside the crystal has the environment E. The
lattice vector ®𝑅 is defined in such a way that it points to an equivalent environment

in space, which means:

E(®𝑟 ) = E(®𝑟 + ®𝑅). (3.1)

®𝑅 is defined as

®𝑅 = 𝑛1®𝑎1 + 𝑛2®𝑎2 + 𝑛3®𝑎3 𝑛𝑖 ∈ Z. (3.2)

The vectors ®𝑎𝑖 are the basis vectors of the point lattice and hence represent its

symmetry. They therefore do not define the actual position of the basis atoms.

The lengths of the basis vectors are often called lattice constants. The basis vectors
form a parallelepiped, which is called the unit cell. The volume of this unit cell is

𝑉c = ( ®𝑎1 × ®𝑎2) · ®𝑎3. Stringing together a sequence of unit cells forms the complete
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Chapter 3 Scattering theory

crystal without overlaps. Primitive unit cells are the smallest possible unit cells that

contain only one lattice point, which often lies in its origin. Unlike a conventional
unit cell, which contains more than one lattice point, the primitive unit cell often

does not fully capture the symmetry of the lattice. An example for that is shown in

figure 3.1 (a).

(a) (b)

Figure 3.1: (a) The primitive unit cell has its lattice point in its origin. The conventional

unit cell contains more than one lattice point. (b) The Wigner-Seitz cell has its lattice point

in its centre. Source: Hunklinger [16].

The rectangular conventional unit cell in figure 3.1 (a) contains two lattice points and

is therefore not primitive. The primitive unit cell does not represent the symmetry

of the point lattice. The unit cells with the highest symmetry in three dimensions

form the 14 Bravais lattices. A Bravais lattice is an infinitely extended lattice that

looks the same from every grid point. In some cases, it is advantageous when the

unit cell has its lattice point in its centre and not like the parallelepiped in its origin.

That is why the most frequently used primitive unit cell is the Wigner-Seitz cell.
The Wigner-Seitz cell covers the area around a lattice point that is closer to this

lattice point than all other lattice points. When one constructs the Wigner-Seitz

cell, all geometric medians of the imaginary lines between the lattice points have

to be connected. This is depicted in figure 3.1 (b).
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Structural analysis Section 3.2

3.2 Structural analysis

Each sample has an electron density distribution 𝜚 (®𝑟 ). Similar to equation (3.1), the

periodicity conditions of the crystal also apply to the electron density distribution:

𝜚 (®𝑟 ) = 𝜚 (®𝑟 + ®𝑅). (3.3)

In the case of X-ray diffraction (XRD), the electrons of the atoms act as the scattering

centres. If a plane wave hits such a scattering centre, it becomes the origin of a

spherical wave. The connection between the scattering amplitude A( ®𝑄) and the

electron density distribution 𝜚 (®𝑟 ) is:

A( ®𝑄) =
∫
𝑉s

𝜚 (®𝑟 ) 𝑒−𝑖 ®𝑄 ·®𝑟𝑑𝑉 . (3.4)

Figure 3.2: The scat-

tering vector ®𝑄 is visu-

alised.

Here, ®𝑄 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧) is the scattering vector with ®𝑄 = ®𝑘′−®𝑘
and 𝑉s is the volume of the sample. The scattering vector

is visualised in figure 3.2 as the difference of the
®𝑘-vectors

between the outgoing and incoming photons. According

to equation (3.4), A( ®𝑄) is the Fourier transform of 𝜚 (®𝑟 ).
In principle, one could transform back to:

𝜚 (®𝑟 ) = 1

(2𝜋)3

∫
A( ®𝑄) 𝑒𝑖 ®𝑄 ·®𝑟𝑑3𝑄. (3.5)

However, the problem is that in diffraction experiments

the observed quantity is only the scattering intensity I( ®𝑄)
and not the scattering amplitude A( ®𝑄). As can be seen in

equation (3.13), the information which contains the phase difference of the scattered

waves is lost.

3.2.1 Transformation to reciprocal space

The Fourier series of 𝜚 (®𝑟 ) is:

𝜚 (®𝑟 ) =
∑︁
ℎ,𝑘,𝑙

𝜚ℎ𝑘𝑙 𝑒
𝑖 ®𝐺ℎ𝑘𝑙 ·®𝑟 ℎ, 𝑘, 𝑙 ∈ Z. (3.6)

Since 𝜚 (®𝑟 ) is looked at in three dimensions, ℎ, 𝑘, 𝑙 are three independent numbers

called Miller indices. The Fourier coefficients are given by:
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𝜚ℎ𝑘𝑙 =
1

𝑉c

∫
𝑉c

𝜚 (®𝑟 ) 𝑒𝑖 ®𝐺ℎ𝑘𝑙 ·®𝑟𝑑𝑉 . (3.7)

𝑉c is the volume of the unit cell and ®𝐺ℎ𝑘𝑙 is a reciprocal lattice vector of the form:

®𝐺ℎ𝑘𝑙 = ℎ®𝑏1 + 𝑘 ®𝑏2 + 𝑙 ®𝑏3. (3.8)

The relation between 𝜚ℎ𝑘𝑙 and ®𝐺ℎ𝑘𝑙 is bijective, i.e. every reciprocal lattice vector

®𝐺ℎ𝑘𝑙 is assigned to exactly one Fourier coefficient 𝜚ℎ𝑘𝑙 and vice versa. In analogy to

the equation (3.2), the vectors
®𝑏1, ®𝑏2, ®𝑏3 create a new coordinate system. Since ℎ, 𝑘, 𝑙

are discrete, every vector ®𝐺ℎ𝑘𝑙 represents one point of the reciprocal lattice. The
reciprocal lattice is the Fourier transform of the lattice in real space. A combination

of the equation (3.3) and the equation (3.6) and with the information that 𝜚ℎ𝑘𝑙 is

independent of ®𝑟 yields:

𝑒𝑖
®𝐺ℎ𝑘𝑙 ·®𝑟 = 𝑒𝑖

®𝐺ℎ𝑘𝑙 ·(®𝑟+®𝑅)

= 𝑒𝑖
®𝐺ℎ𝑘𝑙 ·®𝑟 · 𝑒𝑖 ®𝐺ℎ𝑘𝑙 · ®𝑅

⇒ 𝑒𝑖
®𝐺ℎ𝑘𝑙 · ®𝑅 = 1

⇔ ®𝐺ℎ𝑘𝑙 · ®𝑅 = 2𝜋𝑛 𝑛 ∈ Z.

From the equation (3.2) and the equation (3.8) therefore results:

®𝑏𝑖 · ®𝑎 𝑗 = 𝛿𝑖 𝑗 . (3.9)

𝛿𝑖 𝑗 is the Kronecker delta. The basis vectors of the crystal lattice in real space and

the basis vectors of the reciprocal lattice are related by the following expression:

®𝑏1 =
2𝜋

𝑉c
( ®𝑎2 × ®𝑎3) via cyclic permutation of the basis vectors (3.10)

and

( ®𝑏1 × ®𝑏2) · ®𝑏3 =
(2𝜋)3

𝑉c
. (3.11)

The vectors
®𝑏𝑖 have the dimension of an inverse length, which means that if the

vectors ®𝑎𝑖 are reduced by a constant factor, the reciprocal lattice then expands by
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this factor. This is why the corresponding space is called reciprocal space, k-space

or momentum space (𝑝 = ℏ𝑘). The first Brillouin zone is the Wigner-Seitz cell of

the reciprocal lattice.

The plane in the crystal, spanned by lattice points, is called lattice plane. The

indexing of those lattice planes is done by the Miller indices ℎ, 𝑘, 𝑙 . They are the

inverse intercepts with the axis of the coordinate system. The index zero is selected

for an intersection at infinity. This is shown in figure 3.3.

Figure 3.3: The Miller indices (ℎ𝑘𝑙) are used to name the lattice planes, in this case of a

cubic lattice. The name of the planes can be associated with the inverse intercepts with the

axes. Source: Hunklinger [16].

The distance between the lattice planes is described by equation (3.12):

𝑑ℎ𝑘𝑙 =
2𝜋��� ®𝐺ℎ𝑘𝑙

��� . (3.12)

The Miller indices can also be used to describe directions in real space. This is done

with a notation in square brackets. In a cubic lattice, the direction [ℎ𝑘𝑙] stands
perpendicular to the (ℎ𝑘𝑙) plane. The [ℎ𝑘𝑙] direction is the same direction the recip-

rocal lattice vector ®𝐺ℎ𝑘𝑙 points to. This also implies that ®𝐺ℎ𝑘𝑙 stands perpendicular to

the (ℎ𝑘𝑙) lattice plane. If one of the Miller indices is negative, this is notated with a

dash above the digit. Furthermore, in a hexagonal crystal lattice, it is common to in-

troduce a fourthMiller index 𝑖 = −(ℎ+𝑘), which means a plane is thus named (ℎ𝑘𝑖𝑙).
This is done to capture the three in-plane basis vectors ®𝑎𝑖 and the out-of-plane basis
vector ®𝑐 , as illustrated in figure 3.4. Now the question could be asked why one

should introduce an extra index that contains no new information. This becomes

evident when one tries to write the [112̄0] direction, but with three cubic basis

vectors. Note that you can not just leave out the index 𝑖 , because the (112̄0) plane
from the hcp lattice is not the (110) plane shown in figure 3.3 of the cubic lattice.
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Figure 3.4: The hcp

lattice structure has

four basis vectors.

Instead, one has to consider that the basis vectors of the

cubic lattice are all orthogonal, while the vectors ®𝑎𝑖 of the
hcp lattice are offset from each other by an angle of 120

◦
.

This means that two of the three orthogonal axis of the

cubic system can be aligned with one 𝑎-axis and the 𝑐-axis

of the hcp lattice structure. The remaining axis of the

cubic system is offset by 30
◦
from the remaining hcp axis.

The conversion of the [112̄0] direction in the hcp basis

system into a system with cubic basis vectors would yield

the [1 cos (30
◦) 0] direction. Having non integer Miller

indices is inconvenient, which is why four indices are used

to describe the hcp lattice.

3.2.2 The von Laue condition
The scattering intensity I( ®𝑄) is proportional to the square of the scattering amp-

litude A( ®𝑄). Together with equation (3.4) one obtains the expression:

I( ®𝑄) ∼
���A( ®𝑄)

���2 = ����∫
𝑉s

𝜚 (®𝑟 ) 𝑒−𝑖 ®𝑄 ·®𝑟𝑑𝑉

����2. (3.13)

When the relation from equation (3.6) for 𝜚 (®𝑟 ) of the reciprocal lattice is inserted,
that yields: ���A( ®𝑄)

���2 = �����∑︁
ℎ,𝑘,𝑙

𝜚ℎ𝑘𝑙

∫
𝑉s

𝑒𝑖 (
®𝐺− ®𝑄)·®𝑟𝑑𝑉

�����2. (3.14)

Since the function

𝑒𝑖 (
®𝐺− ®𝑄)·®𝑟

(3.15)

oscillates, the contributions of the summation are averaged to zero. Excluded from

this is the case of ®𝑄 = ®𝐺 , as here the value of the integral is finite:∫
𝑉s

𝑒𝑖 (
®𝐺− ®𝑄)·®𝑟𝑑𝑉 =

{
𝑉s , if ®𝑄 = ®𝐺
≈ 0 , else

. (3.16)

The interference of the scattered waves is constructive in the case of ®𝑄 = ®𝐺 . This
observation condition is called the von Laue condition. The von Laue condition is

visualised in figure 3.5.
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Figure 3.5: The diffraction angles 𝜃𝑖 are adjusted to change the length of the scattering

vectors ®𝑄𝑖 to match the reciprocal lattice vector ®𝐺hkl to satisfy the von Laue condition.

Different diffraction angles 𝜃 and photon energies, which are represented by the

length of the
®𝑘-vectors, yield different ®𝑄-vectors, like ®𝑄1 and

®𝑄2 in figure 3.5 with

𝜃1 and 𝜃2 respectively. If the scattering vector ®𝑄 matches the reciprocal lattice

vector ®𝐺 , which is the case for ®𝑄2 = ®𝐺hkl in figure 3.5, then the von Laue condition

is satisfied. Hence, every point of the reciprocal lattice is a point in momentum

space, whose corresponding scattering vector ®𝑄 satisfies the von Laue condition. In

a thin-film, the out-of-plane direction in reciprocal space refers to the 𝑞𝑧 direction,

while the 𝑞𝑥 and 𝑞𝑦 direction are in-plane. As the reciprocal lattice vector depends

on the distance between the lattice planes 𝑑hkl (equation (3.12)), the relative change

of the out-of-plane lattice constant can be determined by identifying the positional

change of ®𝐺 along 𝑞𝑧 , which is done by measuring Δ𝑞𝑧 . In the following, three

alternative interpretations of the Laue condition will be presented, namely the

relation to Bragg’s law (theorem 3.1), the connection to the concept of the Brillouin

zone (theorem 3.2) and the visualisation of the von Laue condition through Ewald’s

sphere (figure 3.6).

▶ Theorem 3.1 (Relation between the von Laue condition and Bragg’s law).
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Bragg’s law is a special case of the von Laue condition, as it can be directly derived

under certain conditions. Suppose that

1. The scattering is symmetric, which means the angles of the incoming and

diffracted beams are equal. (𝜃 = 𝜃 ′)

2. The scattering is elastic, which means

���®𝑘 ��� = ���®𝑘′���.
3. The scattering is coplanar, whichmeans that the incoming beam, the scattered

beam and the normal of the diffraction plane all lie in one plane.

Then ��� ®𝑄 ��� = ���®𝑘′ − ®𝑘
��� | using figure 3.6

= 2

���®𝑘 ��� sin (𝜃 )
���� ���®𝑘 ��� = 2𝜋

𝜆
, ®𝑄 = ®𝐺

⇒ ®𝐺 = 2

2𝜋

𝜆
sin (𝜃 )

���� ��� ®𝐺ℎ𝑘𝑙

��� = 2𝜋

𝑑ℎ𝑘𝑙

⇒ 𝜆 = 2𝑑ℎ𝑘𝑙 sin (𝜃 ).

Higher orders can also interfere constructively with 𝑑ℎ𝑘𝑙/𝑛. With 𝑑ℎ𝑘𝑙 = 𝑑 , this

leads directly to Bragg’s law.

𝑛𝜆 = 2𝑑 sin (𝜃 ) 𝑛 ∈ N. (3.17)

◀

▶ Theorem 3.2 (Alternative formulation of the von Laue condition). The
von Laue condition can be rewritten, which reveals an interesting connection to the

concept of the Brillouin zone. This derivation is adapted from Gross & Marx [1].

®𝑘′ = ®𝑘 + ®𝐺
�� 2���®𝑘′���2 = ���®𝑘 ���2 + 2

®𝑘 · ®𝐺 +
��� ®𝐺 ���2 ��� ���®𝑘 ��� = ���®𝑘′���

0 = 2
®𝑘 · ®𝐺 +

��� ®𝐺 ���2
®𝑘 · ®𝐺 = −

��� ®𝐺 ���2
2

��� :

��� ®𝐺 ���
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®𝑘 · ®𝐺��� ®𝐺 ��� = −

��� ®𝐺 ���2
2

��� ®𝐺 ���
��� 𝐺 = ®𝐺/

��� ®𝐺 ���
⇒ ®𝑘 ·𝐺 =

𝐺

2

.

◀

The projection of
®𝑘 onto 𝐺 is exactly 𝐺/2. The Brillouin zone is constructed to

cover the region around a lattice point, where all points are closer to it than to

any other lattice point. Consequently, the Brillouin zone’s edge lies halfway to

neighbouring lattice points, which means every scattering vector from the centre

to the edge fulfils the von Laue condition.

Another geometrical visualisation of the von Laue condition is achieved by Ewald’s
sphere, illustrated in figure 3.6. This sphere is constructed such, that the endpoint

of
®𝑘 points to any point of the reciprocal lattice, such as the origin (000). The circle

around the starting point of the vector
®𝑘 with the radius of

���®𝑘 ��� is called Ewald’s

sphere. The von Laue condition is satisfied, if Ewald’s sphere touches a reciprocal

lattice point, because in that case ®𝑄 = ®𝐺 .

Figure 3.6: If the edge of Ewald’s sphere touches a reciprocal lattice point, the von Laue

condition is fulfilled. Source: Hunklinger [16]
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3.3 Data acquisition routine
The fundamental concept in the determination of the lattice constant with X-ray

diffraction (XRD) lies in the von Laue condition or Bragg’s law, as described in

section 3.2.2. The von Laue condition states that a diffraction peak, i.e. a local

maximum of the diffracted intensity I( ®𝑄), can be observed if ®𝑄 = ®𝐺 . When the

distance between the lattice planes of a material is changed via a cryostat or

laser excitation, the reciprocal lattice vector will change accordingly, as implied in

equation (3.12). If the lattice expands, the absolute value of the reciprocal lattice

vector will shrink. Consequently, the absolute value of the scattering vector has to

shrink as well to satisfy the von Laue condition again. This can be achieved by either

a reduced photon energy or a lower diffraction angle 𝜃 . Since the photon energy is

not tunable at our setup, changing 𝜃 is the preferred method. The new diffraction

angle which fulfils the von Laue condition corresponds to the new lattice constant.

Figure 3.7: This exemplary Gaussian fit with

linear background was taken for the Gd dif-

fraction peak at 370 K.

The same reasoning can be applied

to Bragg’ law, derived in theorem 3.1.

Since the wavelength of the incident

light is constant, 𝑑 · sin (𝜃 ) has to stay
constant in order to fulfil Bragg’s law.

A distance increase between the lat-

tice planes must lead to a diffraction

at lower angles 𝜃 , because 𝜃 ∈ [0, 90].
The shift along the 𝑞𝑧 direction of the

peak shown in figure 3.7 is analysed

with a Gaussian fit with linear back-

ground. This Gaussian fitted data is

not the raw data collected by the de-

tector. The detector images first need

to be transformed into the reciprocal

space.

3.3.1 Reciprocal space mapping

In a reciprocal space map (RSM), the scattered intensity I( ®𝑄) is assigned to each

scattering vector ®𝑄 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧). In the context of thin-films samples, the diffraction

peak can be assumed to be isotropic in 𝑞𝑥 and 𝑞𝑦 direction if symmetrical scattering

is considered. This enables a projection of the three-dimensional peak on a two-

dimensional map by the integration over the 𝑞𝑦 direction. This two-dimensional

map is depicted in figure 3.8. The raw images of the area detector show the scattered
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X-rays. Each detector pixel measures the scattered intensity I(𝜃 ), which is then

transformed to a scattered intensity in reciprocal space I( ®𝑄). This numerical

transformation process is described in more detail in the thesis of von Reppert [21].

Figure 3.8: This is a RSM of the Gd sample shown in figure 2.1 (a) at 40 K. From left to

right the peaks are Y, Gd, Al2O3 and Nb. For the Tb sample and the Dy sample, the Gd peak

is replaced respectively. The peaks have a finite width in 𝑞𝑥 , because the sample is neither

a perfect single crystal nor infinity large. Consequently, the sharper nature of the Al2O3

substrate peak is due to its larger volume and indicates a high crystalline purity.

Each of the local diffraction intensity maxima (peak) can be associated with a lattice

constant and thus a material of a sample from figure 2.1, because the peaks are

located at material specific 𝑞𝑧 positions, where the von Laue condition is fulfilled.

When integrating a peak of the RSM from figure 3.8 over the 𝑞𝑥 direction, one

obtains a Gaussian peak as depicted in figure 3.7. A shift of this peak along the 𝑞𝑧-

direction indicates a change of the out-of-plane lattice constant, which enables the

measurement of the quasi-static or time-resolved strain. The concept of reciprocal

space mapping is illustrated in figure 3.9. The incoming light with a wave vector

®𝑘 and an angle of incidence 𝜔 is diffracted on a sample. The outgoing light with

the wave vector
®𝑘′ hits the detector, which is positioned under a detector angle
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2𝜃 . This type of scan is therefore called 𝜔/2𝜃 -scan. The condition 𝜔 = 𝜃 defines a

symmetric diffraction geometry.

Figure 3.9:When a scan of a reciprocal space map is performed, the shift of the diffraction

peak can be tracked by the adjustment of the angle of incidence 𝜔 and the detector angle

2𝜃 . Note that opposing to the reciprocal space map in figure 3.8, the 𝑞𝑧-axis points upwards.

Source: Zeuschner [22]

In figure 3.9, the light purple plane is a segment of the reciprocal space. The empty

red circles indicate an old diffraction peak position, where the von Laue condition

was satisfied for the lattice constant corresponding to the reciprocal lattice vector

®𝐺1. The red filled circle indicates the diffraction peak which appears for a new

lattice constant associated with ®𝐺2. The intensity I(𝑞𝑥 , 𝑞𝑦) of the diffraction peak

is measured by the detector for every angle of incidence 𝜔 . Therefore, each line on

the light purple plane is a detector slice for a different 𝜔 and a segment of Ewald’s

sphere. The corresponding centre pixel of the detector lies on the 𝑞𝑧-axis. The

angle of incidence 𝜔 can be varied to change the scattering vector and thus finding

different diffraction peaks depending on the current reciprocal lattice vector of

the analysed layer. A scan of a segment of the reciprocal space in this manner

yields an I( ®𝑄) map, which is the reciprocal space map depicted in figure 3.8. The

integration of the two-dimensional peak over the 𝑞𝑥 direction leads to a Gaussian

peak, as depicted in the blue inset in figure 3.9. The information of the change of the

out-of-plane lattice constant is fully contained in Δ𝑞𝑧 . As described in Zeuschner

et al. [23], the change of 𝑞𝑧 can be converted to a relative change of the out-of-plane

lattice constant, which is called the strain 𝜂:

30



Data acquisition routine Section 3.3

𝜂 = − Δ𝑞𝑧��� ®𝐺 ��� + Δ𝑞𝑧
. (3.18)

Since Δ𝑞𝑧 is on the order of 10
−3
, the strain is practically proportional to Δ𝑞𝑧 .

The technique of reciprocal space mapping is important to evaluate the positions

and widths of the diffraction peaks in reciprocal space. In some cases, a different

technique for strain assessments can be used, which is called reciprocal space

slicing. This technique is faster because the diffraction angle remains constant,

which eliminates the need to record a detector image for each diffraction angle.

3.3.2 Reciprocal space slicing

The reciprocal space slicing (RSS), introduced in Zeuschner et al. [23], is a faster
way to measure the shift of the diffraction peaks, as the diffraction angle 𝜔 is not

changed during the experiment. The techniques of reciprocal space mapping and

reciprocal space slicing are compared side by side in figure 3.10. When reciprocal

space slicing is applied, only I( ®𝑄) of one detector slice is measured, which is the

highlighted dark purple slice. This one-dimensional subset of the reciprocal space

is a RSS. A RSM is composed of many RSS at different diffraction angles, which is

illustrated as the light purple area in figure 3.10 (a). A change of the lattice constant

of the material and thus the shift Δ𝑞𝑧 of the diffraction peak in reciprocal space

leads to the diffraction peak to slowly move out of the captured slice. However,

it can still be measured, as the diffraction peaks have a finite width, because the

sample is not infinitely large, has defects and the light used for the diffraction is

neither monochromatic nor parallel. As the shifted diffraction peak does not lie in

the centre of the detector slice any more, both a lower diffraction peak intensity and

different position are recorded. This is indicated by the blue inset in figure 3.10 (b).

In case of reciprocal space slicing, the measured shift Δ𝑞𝑧,D on the detector is not

the same shift as Δ𝑞𝑧 measured by reciprocal space mapping. The shift Δ𝑞𝑧,D has to

be corrected to match the shift of the diffraction peak from centre to centre. This

correction is called RSS correction.

Determination of the RSS correction factor

Depending on whether the RSM or RSS technique is used, a different shift of the

diffraction peak in the 𝑞𝑧 direction is determined. The correction of this discrepancy

between Δ𝑞𝑧,D and Δ𝑞𝑧 depends on the shape of the peak. The RSS factor 𝑆 is
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(a) (b)

Figure 3.10: (a) Reciprocal space mapping: The diffraction peak moves down along the 𝑞𝑧
direction, as the lattice expands. (b) Reciprocal space slicing: This causes the peak to shift

out of the measured slice at a constant diffraction angle 𝜔 , but as it has a finite width, this

slice is sufficient to observe a shift of the diffraction peak. However, the measured shift on

the detector Δ𝑞𝑧,D is not the actual Δ𝑞𝑧 . It has therefore be RSS corrected, depending on
the shape of the diffraction peak and the diffraction angle. Source: Zeuschner [22]
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calculated via equation (3.19), as described in Zeuschner et al. [23], under the
assumption of a Gaussian peak shape.

𝑆 = 1 +
(
𝜎𝑧

𝜎𝑥

)
2

tan
2 (𝜃 ). (3.19)

The RSS factor 𝑆 depends on the widths 𝜎𝑥 and 𝜎𝑧 of the diffraction peak in the

𝑞𝑥 and 𝑞𝑧 directions, as well as the diffraction angle 𝜃 . Before the technique of

reciprocal space slicing is applied, at least one RSM has to be recorded to determine

the width of the diffraction peaks. In figure 3.11, the peak width of the rare-earth

materials is shown as a function of temperature.
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Figure 3.11: The diffraction peak width increases, while the material goes through a phase

transition, which can be seen in the quasi-static strain measurements.

The comparison of the quasi-static strain measurements with the peak width 𝜎𝑧
(figure 3.11) reveals that the peak width increases at the phase transition temper-

atures, because the material does not transform homogeneously. The quasi-static

strain measurements were conducted while the samples were heated (triangles

pointing upwards) and cooled (triangles pointing downwards). The Dy sample has

three local maxima in the width in the 𝑧-direction. The first two maxima at around

70K and 90K arise from the phase transition from ferromagnetic (FM) to helical

antiferromagnetic (AFM) and back, as illustrated in figure 2.4. This phase transition
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shows a hysteresis. The third peak in the peak width of the Dy sample occurs

at roughly 180 K, where the material undergoes a second phase transition from

AFM to paramagnetic (PM). The materials Gd and Tb only have this second phase

transition from FM to PM at their respective Curie temperature. However, the

relative change of the peak width is below 4%, rendering the temperature-resolved

RSS factor practically constant, which is visualised in figure 3.12.
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Figure 3.12: The temperature-resolved RSS factor was calculated by equation (3.19) and

the use of the peak widths. The temperature-resolved RSS factor is practically constant,

with small peaks around the phase transitions.

In order to calculate the transient, i.e. time-resolved RSS factor, the temperature-

resolved average width 𝜎𝑥 of diffraction peaks are used. These widths are obtained

by the technique of reciprocal space mapping. The time-resolved RSS factor 𝑆 (𝑡)
is calculated similarly to the constant RSS factor calculated in equation (3.19). As

described in Zeuschner et al. [23], the width 𝜎𝑧 (𝑡) is now time-dependent:

𝜎𝑧 (𝑡) =

√︄
𝜎2

𝑥𝜎D(𝑡)2

𝜎2

𝑥 − 𝜎D(𝑡)2
tan

2 (𝜃 )
(3.20)

⇒ 𝑆 (𝑡) = 1 +
(
𝜎𝑧 (𝑡)
𝜎𝑥

)
2

tan
2 (𝜃 ). (3.21)
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Here, 𝜎D(𝑡) is the transient width of the diffraction peak on the detector. An

example of the time-resolved RSS factor is shown in figure 3.13.
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Figure 3.13: The transient RSS factor increases when the material shows an uncorrected

strain. The transient RSS factor significantly influences the strain, with a change of up to

20%.

The time-resolved strain data was collected with the pump-probe setup outlined

in section 5.1. The peak width 𝜎D(𝑡) on the detector and thus the transient RSS

factor increases, when the material exhibits an inhomogeneous strain profile. As

will be discussed in chapter 5, this is due to energy that flows into the respective

layer, which includes a thermal expansion that does not homogeneously excite the

layer and therefore broadens the peaks. In a first approximation, the transient RSS

factor depends linearly on 𝜎D(𝑡), as can be seen in figure 3.13. The time-resolved

RSS factor of Gd is almost constant in time, because the temperature-resolved RSS

factor is close to one, since the diffraction peaks of Gd are the broadest in 𝜎𝑥 .
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4 Extended Grüneisen model

This chapter presents the temperature-resolved quasi-static strain measurements of
the Gd, Tb and Dy 40 nm thin-films carried out at the KMC-3 XPP endstation at
BESSY II. The phononic and magnetic Grüneisen parameters of Gd, Tb and Dy are
extracted in terms of an extended Grüneisen model. The extracted magnetic Grüneisen
parameter is constant for Dy but surprisingly temperature-dependent for Gd and Tb.
This result is unexpected, because previously conducted measurements at Dy and Ho
([3, 4]) have shown a temperature-independent Grüneisen parameter. The separation
of the phononic and magnetic Grüneisen parameters is adapted from von Reppert
et al. [24].

4.1 Endstation KMC-3 XPP at BESSY II

The endstation KMC-3 XPP at the BESSY II facility in Berlin, Adlershof is cap-

able of time-resolved X-ray diffraction with tuneable photon energies in the hard

X-ray regime. It is also well suited for temperature-resolved measurements of

the quasi-static strain, because of its high brilliance. The time-resolution in the

standard mode of operation of 100 ps is, however, often not sufficient to resolve

ultrafast coherent strain dynamics, i.e. sound waves. For time-resolved ultrafast

strain measurements, the plasma X-ray source was used, which is presented in

chapter 5. The experimental setup of the KMC-3 XPP endstation at BESSY II is

sketched in figure 4.1. The high brilliance synchrotron light source, the cryogen-

ically cooled sample holder inside a vacuum chamber and the area pixel detector

attached to a four-circle goniometer renders this setup optimal for the temperature-

resolved strain assessments. The X-ray light is generated by highly relativistic

electrons, which are deflected by a bending magnet. The thus generated synchro-

tron radiation is directed onto the sample via optical elements such as mirrors

and a monochromator. The diffraction signal is then captured by the area detector.

Further information about the experimental setup can be found in Rössle et al. [25].
At the KMC-3 XPP beamline, full reciprocal space maps (RSM) are recorded, which

means that the reciprocal space slicing technique as described in section 3.3.2 is

not utilised. An exemplary picture of an RSM can be found in figure 3.8.
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Figure 4.1: This is the experimental setup of the KMC-3 XPP beamline at BESSY II, reduced

to the relevant components for static strain measurements. The figure is adapted from

Rössle et al. [25]. The synchrotron light is directed onto the sample through X-ray optics.

The sample can be cooled by a cryostat, and the resulting signal is captured by the detector

mounted on a four-circle goniometer.
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4.2 Temperature-induced static strain
The goal of the temperature-resolved strainmeasurements is to extract the phononic

and magnetic Grüneisen parameters of Gd, Tb and Dy, which are required in order

to understand and model the ultrafast strain dynamics. The magnetic Grüneisen

parameter is the proportionality constant between the exerted magnetic stress and

magnetic energy density in terms of an extended Grüneisen model presented in

section 2.2.1. The first step to extract the Grüneisen parameter is to determine

the temperature-resolved quasi-static strain (figure 4.2). Depending on the tem-

perature, the strain can either be positive due to thermal expansion or negative,

which is then called negative thermal expansion (NTE). The second ingredient

necessary to extract the magnetic Grüneisen parameter is the heat capacity of

each material (figure 4.3). The quasi-static strain is then converted to stress via

equation (2.5), and the temperature is converted to a thermal energy density with

equation (2.6). The stress and the energy density are subsequently divided into

their electronic, phononic and magnetic components. The literature values and the

extracted Grüneisen parameter can be found in table 4.1.

0 50 100 150 200 250 300 350 400
Temperature (K)

0

1

2

3

4

5

6

St
ra

in
 

(1
0

3 )

Gd 40 nm
Tb 40 nm
Dy 40 nm heating
Dy 40 nm cooling
Gd bulk 
Darnell et al. 1963
Tb bulk 
Darnell et al. 1963
Dy bulk 
Darnell et al. 1963

Figure 4.2: The measured temperature-resolved quasi-static strain of Gd, Tb and Dy

is depicted with triangles pointing upwards while heated and with triangles pointing

downwards while cooled. The quasi-static strain measurements for heating and cooling of

Gd and Tb are practically identical, while Dy shows a hysteresis because of the additional

phase transition into the AFM phase. The 40 nm thin-film data is also compared with bulk

data (semi-transparent circles) from Darnell [26, 27].
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The temperature-dependent shift of the diffraction peaks in the recorded RSMs

at the KMC-3 XPP endstation are used to determine the strain of the rare-earth

thin-films, as described in section 3.3. This strain is depicted in figure 4.2, together

with the bulk data of the materials, which are nearly identical. The 40 nm rare-earth

thin-film materials have in common that the linear thermal expansion (LTE) above

their respective ordering temperature is driven by the phononic pressure. Despite

the material is heated, a characteristic they also share is their contraction with a

strain minimum at the magnetic ordering temperature. This contraction is called

negative thermal expansion (NTE). For Gd and Tb, the ordering temperature is

known as the Curie temperature, which is 𝑇𝐶, Gd = 320K and 𝑇𝐶, Tb = 250K in

our samples respectively. For Dy, this ordering temperature is called the Néel

temperature (𝑇𝑁, Dy = 190 K), since Dy already has gone through its ferromagnetic

(FM) to helical antiferromagnetic (AFM) phase transition at lower temperatures.

The magnetic ordering temperature corresponds to the minimum of an interpolated

polynomial fit of the thin-film quasi-static strain data, which matches the bulk

data. The temperatures found that way are roughly 20 K − 30K higher than the

respective literature values, which can be found in table 4.1. The reason for that

discrepancy could be that the strain minimum is not aligned with the Curie tem-

perature, as energy can still be deposited in the magnetic subsystem, even above

the magnetic ordering temperature (Koç et al. [28]). The main difference of the

temperature-dependent strain between Gd, Tb and Dy occurs 80 K below their

respective magnetic ordering temperatures. The strain of Gd is mostly constant

between 50K 170K. The strain of the Tb layer has a distinct maximum at around

170 K, while Dy goes through a second phase transition at approximately 80 K from

FM to AFM, as illustrated in figure 2.4. In the FM phase of Dy, the heating and cool-

ing measurements of Dy show a hysteresis. This different behaviour is also evident

in the bulk material data from Darnell [26, 27]. However, a hysteresis is also visible

in the AFM phase. In previous measurements (von Reppert et al. [4]), this hysteresis
was not observed. The hysteresis in the AFM phase is likely an artefact caused by

slight movements of the sample holder during heating and cooling. At the Curie

temperatures of Gd and Tb and the Néel temperature of Dy, the lattice constants of

the rare earths are minimal. Below these temperatures, the expensive phononic

stress competes with a contractive stress induced by the magnetic subsystem. The

idea of an extended Grüneisen model is to separate the stress components into a

conventional positive phononic Grüneisen parameter and in our case a negative

magnetic Grüneisen parameter.
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4.3 Heat capacities of rare earths
The heat capacity is the next needed ingredient to determine themagnetic Grüneisen

parameter. The measurements of the bulk heat capacity 𝐶p at constant pressure

from Griffel et al. [29], Jennings et al. [30], Griffel et al. [31] and Jennings et al. [32]
for Gd, Tb, Dy and Lu are shown in figure 4.3.
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Figure 4.3: The temperatures where the peaks in the measured heat capacity data for

Gd, Tb and Dy occur, can be identified as the phase transitions or magnetic ordering

temperatures. The heat capacity of Lu is included as a proof of principle to illustrate the

convergence against the Dulong–Petit limit of 3𝑅, indicated by the red dashed line.

The total heat capacity in figure 4.3 is the sum of the heat capacity of the electronic,

phononic and magnetic subsystem, as illustrated in figure 2.6. All the materials have

a higher heat capacity than predicted by the Dulong-Petit limit, which is partially

because energy can still be distributed into the magnetic subsystem, even above

the magnetic ordering temperature. Another contribution is the electronic heat

capacity shown in figure 2.7 (a), which causes a deviation from the Dulong-Petit

limit. This is supported by the heat capacity measurements of the paramagnetic

rare-earth material Lu, which is included as a proof of principle, because the

magnetic subsystem has no contribution to the heat capacity in this material. The

measured data for Lu should therefore equal the sum of electronic and phononic heat

capacities, as depicted in figure 2.7 (a) and figure 2.8 (a) respectively. The subtraction

of those two heat capacities from the total heat capacity yields the magnetic part
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of the heat capacity, which is shown in figure 2.9 (a). The corresponding energy

density to the heat capacity of each subsystem is obtained by the integration of

the heat capacity over the temperature (equation (2.6)). The data obtained in

this way are interpolated and not measured, which is why they are not depicted

with data points any more. As expected, the magnetic subsystem has almost no

contribution in Lu for the heat capacity. The small but non-zero contributions arise

because the literature value of the Debye temperature does not perfectly match the

measurement values. The shape of the temperature-dependent heat capacity in

Gd, Tb and Dy resembles the prediction from figure 2.10 well. The achieved result

is that an energy density can now be assigned to each of the three subsystems at

each temperature. The use of newer heat capacity data as in Dan’kov et al. [33],
Jayasuriya et al. [34] and Pecharsky et al. [35] yields a very similar result. From

statistical mechanics, the magnetic energy density of Dy below the phase transition

is expected to be the largest, because it has the largest total angular momentum

quantum number 𝐽 , which can be seen in table 2.1. The following relation applies

to the entropy for systems with quantized angular momentum:

𝑆 =
𝛥𝑄

𝑇
= 𝑁𝑘𝐵 ln (2𝐽 + 1) . (4.1)

This is confirmed, as the relation 𝜌Dy, mag > 𝜌Tb, mag > 𝜌Gd, mag holds below their

phase transition temperature into the paramagnetic phase.

4.4 Transformation from strain to stress

The strain 𝜂 from figure 4.2 is related to the stress 𝜎 via Hooke’s law (equa-

tion (2.5)). 𝑐33 is the corresponding elastic constant, as described in Gross &

Marx [1]. This means that the temperature-resolved strain can be converted into a

total temperature-resolved stress 𝜎tot, which is shown in figure 4.4 (a). The elastic

constant 𝑐33 is assumed to be independent of the temperature, as its relative change

is approximately 10% over the whole measured temperature interval. For more

information on that, see the table of literature values table 4.1.

Figure 4.4 (a) depicts the stress plotted against the temperature, and figure 4.4 (b)

shows the stress plotted against the phononic energy density. This is possible

because figure 2.8 (b) relates each phononic energy density with a corresponding

temperature. The phononic stress is then subtracted from the total stress to extract

the magnetic Grüneisen parameter.
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Figure 4.4: (a) The total stress is plotted against the temperature. (b) The total stress is

plotted against the phononic energy density corresponding to the measured temperature.

The red dashed lines indicate the phononic contribution to the total stress, extracted from

the high temperature limit.

4.5 Phononic and magnetic Grüneisen parameters

The Grüneisen model interprets the stress as an energy density, which can be seen

in equation (4.2), since the Grüneisen parameter 𝛤 is a dimensionless quantity.

𝜎 = 𝛤𝜌𝐸 . (4.2)

Applied to the phononic energy density, one can extract the phononic Grüneisen

parameter 𝛤pho as the slope of the red dashed lines in figure 4.4 (b), since the only

present stress and therefore strain is exerted by phonons. The phononic Grüneisen

parameters, extracted from the slopes of the linear functions in figure 4.5 (a), are

𝛤pho, Gd = 0.4, 𝛤pho, Tb = 0.7, 𝛤pho, Dy = 0.9. As shown in figure 2.7 (b), the electronic

energy density 𝜌ele represents only a small fraction of the total energy density and

can therefore be neglected. Those linear functions with the slope of the phononic

Grüneisen parameter are plotted individually in figure 4.5 (a), and when they are

subtracted from the total stress (figure 4.4 (b)), the remaining stress is the magnetic

stress 𝜎mag (figure 4.5 (b)). The magnetic energy density 𝜌mag can be calculated

from the magnetic heat capacity, illustrated in figure 2.9 (b). In order to identify the

magnetic Grüneisen parameters, one has to determine the slope of those functions.

It stands out that the phononic Grüneisen parameter of Gd is much smaller than

for Tb and Dy. The reason for this is presumably that the phononic expansion for

Gd (red dashed line figure 4.4 (b)) is approximated linearly too close to the phase
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Figure 4.5: The Grüneisen parameter can be identified as the slopes of the functions in

the respective plots. (a) The phononic Grüneisen parameter is constant for Gd, Tb and Dy.

(b) The magnetic Grüneisen parameter of Dy is constant, while it is energy density and

therefore temperature-dependent for Gd and Tb.

transition of Gd. The use of high temperature literature values would probably lead

to a steeper fit and a similar result compared to the other rare earths. By chance, the

result of 𝛤pho, Gd = 0.4 that I derived from my measured data up to 400 K agrees very

well with the result in Koç et al. [28], where the Grüneisen parameter is calculated

with equation (4.3).

𝛤 =
𝛼𝐵

𝐶RE

. (4.3)

Here, 𝛼 is the linear thermal expansion, 𝐵 the bulk modulus and 𝐶RE the heat

capacity of the rare-earth element. The bulk modulus assumes isotropic elastic

constants, which do not apply to materials with an hcp lattice structure. This

difference in the calculation explains the discrepancies that arise in the computation

of the magnetic Grüneisen parameter compared to Koç et al. [28]. It is not possible
to determine one magnetic Grüneisen parameter 𝛤mag, as the slopes in figure 4.5 (b)

are not constant any more.

4.5.1 Magnetic Grüneisen parameter of Gd
It is evident that the magnetic Grüneisen parameter of Gd is energy density and

therefore temperature-dependent, since the slope of the graph of the function in

figure 4.6 is not constant. However, it is still possible to determine two Grüneisen

parameters, one for low and one for higher energy densities.
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Figure 4.6: The extracted magnetic Grüneisen parameter of Gd is 𝛤mag, Gd = −2.5, taken

between 80 J/cm
3 (220 K starting temperature) and 160 J/cm

3 (320 K = 𝑇𝐶, Gd). 𝛤mag, Gd = −1

below the starting temperature.

The limit between those two regimes was chosen to be at 80 J/cm
3
, which corres-

ponds to a temperature of 220 K. This is exactly the temperature at which the

time-resolved strain measurements in the ferromagnetic phase were conducted

(see section 5.3.1), as it is 80 K below the phase transition. This qualifies that exact

energy density as an appropriate starting point of the fit, because the determined

Grüneisen parameter could then be used for the modelling of the time-resolved

strain measurements in the FM phase. The other borders of the linear fits are the

first data point at low energy densities and the measured Curie temperature of 320 K

at high energy densities. The magnetic Grüneisen parameter of Gd, as determined

by Koç et al. [28], ranges from 𝛤mag, Gd ∈ [−1,−2], which is of lower absolute

value than the estimated 𝛤mag, Gd = −2.5 presented here. Additionally, the possible

underestimation of the phononic Grüneisen parameter would further increase the

magnitude of 𝛤mag, Gd = −2.5 and therefore further increase that discrepancy.

4.5.2 Magnetic Grüneisen parameter of Tb

Similar to the magnetic Grüneisen parameter of Gd, the magnetic Grüneisen para-

meter of Tb is not constant. It is practically zero at low temperatures, which is
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counterintuitive, as it means that energy can be deposited in the magnetic system,

but it does not exert any stress.
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Figure 4.7:The extractedmagnetic Grüneisen parameter of Tb is 𝛤mag, Tb = −2.7. This linear

fit 2 was taken between 75 J/cm
3 (170 K starting temperature) and 164 J/cm

3 (250 K = 𝑇𝐶, Tb).
The constant regime of 𝛤mag, Tb is between 5 J/cm

3 (41 K) and 64 J/cm
3 (156 K).

The linear fit 1 in figure 4.7 was taken between the first data point and 64 J/cm
3

(170 K), as this is the range, where the approximation of a constant magnetic

Grüneisen parameter is best. The lower boundary of the linear fit 2 is 75 J/cm
3
,

which corresponds to 170 K, which is again 80 K below the phase transition, where

time-resolved measurements in the ferromagnetic phase were conducted (see sec-

tion 5.3.2). The upper boundary is the measured Curie temperature of 250 K. If a

Grüneisen parameter with higher accuracy is necessary, the use of more than two

linear fits has to be considered, as the magnetic stress plotted against the magnetic

energy density has a higher curvature for Tb than for Gd.

4.5.3 Magnetic Grüneisen parameter of Dy
The extraction of the magnetic Grüneisen parameter of Dy is more straight forward

than for Gd and Tb, since it is approximately constant over the whole relevant

temperature interval from 42 J/cm
3
to 130 J/cm

3
. The lower boundary corresponds

to 100 K, where the time-resolved strain measurements in the ferromagnetic phase

were conducted (see section 5.3.3), and the upper boundary corresponds to the Néel

temperature of Dy of 190 K.
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Figure 4.8:The extractedmagnetic Grüneisen parameter of Dy is 𝛤mag, Dy = −3.1. The linear

fit was taken between 42 J/cm
3 (100 K starting temperature) and 130 J/cm

3 (190 K = 𝑇𝑁, Dy).

The hysteresis of the strain measurements presented in figure 4.2 is still visible

during the phase transition into the AFM phase. This phase transition is most

likely the reason why the heating and cooling Grüneisen parameter of Dy deviates

but is perfectly aligned for Gd and Tb. The magnetic Grüneisen parameter for

Dy, averaged over heating and cooling, amounts to 𝛤mag, Dy = −3.1. This result

agrees fairly well with the result from Mattern [36], where 𝛤mag, Dy = −2.9 was

determined. The constant nature of the magnetic Grüneisen parameter of Dy could

be a coincidence, but similar results were found in measurements performed on

Holmium in Pudell et al. [3], where the Grüneisen parameter of Holmium was also

constant in temperature.

4.5.4 Comparison of Grüneisen parameters
It is still an open question why the magnetic Grüneisen parameter for Gd and

Tb is temperature-dependent, while the magnetic Grüneisen parameter for Dy is

constant. In a temperature interval where both Grüneisen parameters are non-zero,

it applies that

��𝛤mag

�� > ��𝛤pho��, which can be seen in figure 4.9. This is the reason

why Gd, Tb and Dy all exhibit a negative thermal expansion, which is also essential

to understand the negative thermal expansion on ultrashort timescales presented

in chapter 5.
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Figure 4.9: To get an overview of the magnitude of the phononic and magnetic Grüneisen

parameters, they are here plotted in the same diagram against their respective energy

density.

Table 4.1: The literature values for Gd, Tb, Dy and Lu are taken from Haynes [37], unless

stated otherwise.

property Gd Tb Dy Lu

atomic weight (g/mol) 157.25 158.92534 162.50 174.967

density 𝜌 (g/cm
−3
) 7.901 8.230 8.551 9.841

lin. therm. expansion 𝑐-axis 𝛼 (10
−6
/K) 10.0 12.4 15.6 20.0

Sommerfeld coefficient 𝛾 (mJ/(mol K
2
)) 4.48 3.71 4.9 8.194

bulk modulus B (GPa) 37.9 38.7 40.5 47.6

Debye temperature𝛩𝐷 (K) 182 177 183 185

elastic constant 𝑐33 at 298 K (GPa)
①

71.9 [38] 72.25 [39] 78.1 [39] /

measured mag. ordering temp. (K) 320 250 190 /

literature mag. ordering temp. (K) 294 [33] 220 [40] 179 [40] /

phononic Grüneisen parameter 𝛤pho 0.4 0.7 0.9 /

magnetic Grüneisen parameter 𝛤mag -2.5
②

-2.7
②

-3.1 /

①
The elastic constants depend on the temperature, but the relative changes are rather small, e.g. for

Tb, c33 at 80 K amounts to 79.83GPa, which is roughly 1.1 times the value of c33 at 298 K. ([38, 39])

②
The magnetic Grüneisen parameter for Gd and Tb are temperature-dependent. The given value is

based on a linear fit between 220 K for Gd and 170 K for Tb and the corresponding Curie temperature.
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5 Ultrafast magnetostriction

This chapter contains the time-resolved ultrafast strain measurements of Gd, Tb and
Dy 40 nm thin-films carried out at the plasma X-ray source (PXS). I conducted the
measurements on the Gd and Tb samples, while the measurements on the Dy sample
were conducted by my colleagues Maximilian Mattern and Alexander von Reppert
in 2021. Similar experiments have already been conducted in our group by Pudell
et al. [3] on Ho and by von Reppert et al. [4] on Dy with a different layer thickness. The
time-resolved strain measurements of Gd by Koç et al. [28] at BESSY II were limited
by a time-resolution of 100 ps, typical for synchrotron experiments. The thin-film
strain responses are examined in two states, namely in the paramagnetic (PM) phase
and in the ferromagnetic (FM) phase for Gd and Tb and in the antiferromagnetic
(AFM) phase for Dy. The rare earths exhibit negative thermal expansion below their
magnetic ordering temperature on a ps timescale. The laser-induced contraction of Gd
is delayed, which indicates a slower demagnetisation compared to Tb and Dy. This
result is in line with the findings of Wietstruk et al. [11]. The strain dynamics in the
PM phase are unambiguously modelled by a one-energy and linear-chain-model with
the udkm1Dsim toolbox, presented in Schick [41].

5.1 Plasma X-ray source (PXS) setup
The plasma X-ray source (PXS) is a tabletop setup to generate femtosecond hard

X-ray pulses with a kilohertz repetition rate. This is achieved by a focussed 50 fs

(FMHM), 7W and 1 kHz laser beam with a central wave length of 800 nm on a

15 µm thin copper tape. A copper plasma is created at the focal point, which leads

to free electrons due to the high energy density. The free electrons are accelerated

back to the copper, because of the oscillating electromagnetic field provided by

the laser pulse, which consequentially leads to an emission of Bremsstrahlung

and characteristic Cu-K𝛼1 and Cu-K𝛼2 radiation. The photons emitted from the

Cu-K𝛼1,2 transitions have a wavelength of approximately 𝜆X-ray = 1.54Å (8.047 keV

and 8.028 keV [42]). They are then focused on the sample by a Montell X-ray optic

with a divergence of 0.3◦, which also acts as a monochromator, as described in

Bargheer et al. [43]. The laser pulse with a central wavelength of 800 nm has a pulse

duration of 50 fs. The generated X-ray pulse has a duration of < 250 fs, because
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X-ray photons are only generated while energetic electrons with energies above

8 keV generated by the 800 nm laser pulse are present. The optical pump and X-ray

probe pulses then hit the sample with a time delay Δ𝑡 . The sample is mounted on a

two circle goniometer together with a Pilatus X-ray area detector. A sketch of the

PXS setup can be seen in figure 5.1. More detailed information about the PXS can

be found in Zamponi et al. [14] and Schick et al. [15].

Figure 5.1: This sketch illustrates the PXS setup which, broken down to the essentials, is

merely a pump-probe experiment with an 50 fs 800 nm pump and an 250 fs X-ray probe.

The time delay Δ𝑡 between pump and probe can be adjusted via the mechanical delay stage.

The sketch is adapted from Zeuschner [22].

The laser pulses generated in the Ti:Sa-oscillator and Ti:Sa-amplifier of the company

Coherent are split into two beams, which are used in this pump-probe experiment.

The general concept of a pump-probe experiment is that the pump pulse excites

(pumps) the sample. After the excitation, the probe pulse is used to analyse the

sample, in our case to measure the Bragg-peak position and consequently the strain,

utilising the von Laue condition introduced in section 3.2.2. It is common for pump-

probe experiments to use optical pump and probe beams, but in order to diffract

from the crystal lattice, an X-ray probe is necessary and used in a time-resolved

XRD setup. Bragg’s law reveals (theorem 3.1), that the wavelength has to be smaller

than twice the distance of the lattice planes. Since the time delay Δ𝑡 between the

pump and probe pulse is variable, the temporal strain evolution can be evaluated

(figure 5.2). In contrast to the measurements at the KMC-3 XPP endstation at BESSY

II presented in chapter 4, the data acquisition routine used for my thesis at the
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PXS involves reciprocal space slicing (RSS) as described in section 3.3.2, in order to

reduce the measurement time. The data shown here is therefore RSS corrected by a

time-resolved RSS factor.

5.2 Ultrafast strain dynamics in the paramagnetic
phase

The time-resolved ultrafast strain dynamic measurements are started off with the

investigation of the strain in the paramagnetic phase of the Gd, Tb and Dy thin-film

samples, whose structure is shown in figure 2.1. In particular, each of the rare-earth

samples contains a layer of the respective rare-earth material and a layer of Nb.

The measured time-resolved strain (section 5.2.1) was modelled with a linear-chain-

model (figure 2.11 (a)) and the one-energy-model (figure 2.6), to provide a sufficient

understanding of the dynamics (section 5.2.2). The modelling of the ultrafast strain

dynamics was carried out in the first 60 ps for each set of measurements.

5.2.1 Experimental strain transients
The experimentally determined strain transients of the rare-earth thin-films in the

PM phase are depicted in figures 5.2 (a), 5.2 (c) and 5.2 (e). The corresponding signal

of the Nb layer is shown in figures 5.2 (b), 5.2 (d) and 5.2 (f). The materials Gd, Tb

and Dy all show positive strain due to thermal expansion, but only after 4 ps, as the

Y layer on top is excited first. Similarly in all materials, this strain declines at delays

above 120 ps, which can be interpreted as the heat that flows into the substrate of

the sample. Before 120 ps, the strain dynamics are dominated by acoustic waves

which propagate through the sample. Their impact on the strain can be visualised

by a strain map, depicted in figure 5.3 (b).

The initial expansion during the first 10 ps is induced by the expansive strain wave

that enters the rare-earth layer. At roughly 20 ps, a decline in the measured strain

signal is observed across all rare-earth materials, because the strain wave partially

exits the rare-earth layer and traverses to the underlying Nb layer. This is why the

Nb layer shows its largest expansion at approximately 20 ps (figures 5.2 (b), 5.2 (d)

and 5.2 (f)). A portion of the strain wave is reflected at the interface between the

rare-earth material and the Nb. Since the reflected strain wave is lower in amplitude,

a decline in the strain signal can be observed. When the strain wave hits the surface,

i.e. the interface between Y and air, it is reflected into the sample again. As air

has a larger acoustic impedance (slower sound velocity) compared to Y, the strain

wave undergoes a phase shift of π, which transforms the reflected strain wave into
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Figure 5.2: (a) shows the strain of the Gd layer at 320 K and (b) the corresponding Nb

strain. (c) depicts the strain of the Tb layer at 320 K and (d) the corresponding Nb strain.

(e) illustrates the strain of the Dy layer at 250 K and (f) the corresponding Nb strain.
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the material to one of contractive stress. This is why the decay in the strain signal

becomes steeper at around 40 ps. The shapes of transient strain maxima differ

between the rare earths, most prominently at high fluences at 15 ps and 35 ps, as the

strain of the Gd layer at 5.0mJ/cm
2
shows two distinct maxima, while the second

peak appears in the Tb and Dy layer only as a shoulder at 35 ps. The differences in

the time-resolved shapes of the strain is supported by the simulation in section 5.2.2.

The larger amplitude of Dy compared to Gd and Tb is also discussed there.

Since the rare earths are in their PM phase, no energy can be deposited in the

magnetic subsystem of the three-energy-model illustrated in figure 2.6, because the

spin system is already fully disordered. The excitation energy can only be deposited

in the remaining electronic and phononic subsystems. Both exert a positive stress on

the lattice, which leads to an expansion of the rare-earth materials after excitation.

The main differences between the strain measurements in Gd, Tb and Dy are that

Gd at 5.0mJ/cm
2
shows far less strain than Tb at 5.1mJ/cm

2
. The strain of Dy

at 3.4mJ/cm
2
is about as large as of Tb at 5.1mJ/cm

2
but at a significantly lower

fluence. The observed strain of the Nb layer is severely impacted by the rare-earth

layer above it, because an expansion of the rare-earth layer leads to a compression

of the Nb layer. Since Dy exhibits the largest strain per fluence in the PM phase,

the compression of Nb is most prominently visible in figure 5.2 (f). The thermal

expansion of the Tb layer at 320 K is weaker than that of the Dy layer but stronger

than of the Gd layer. Therefore, the thermal expansion of the Nb in the Tb sample

induced by the laser excitation can be compensated by the contraction induced

by the expansion of the Tb layer at timescales lower than 20 ps. The low strain

amplitude of the Gd layer compared to the Tb and Dy layer can be explained by

the fact that the measurement was conducted at 320 K where Gd is still close to its

phase transition. The proximity to the Curie temperature enables some residual

amount of energy to be distributed into the magnetic system, which counteracts

the expansion since the magnetic Grüneisen parameter is negative, which was

previously discussed in chapter 4. As a result, the Nb layer in the Gd sample shows

an instantaneous expansion, because the compression of the Nb layer induced by

the expansion of the Gd layer only hinders but not compensates the expansion

induced by the laser excitation. The interpretations of these dynamics will now

subsequently be verified with a one-energy and linear-chain-model.

5.2.2 Simulated strain transients

I used the udkm1Dsim toolbox by Schick [41] for the simulations, which is essen-

tially based on a linear-chain-model as illustrated in figure 2.11. The length of the
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red spacer sticks in this model is determined by the energy deposited in the sample

by the pump pulse, which is calculated by a multilayer absorption model. Therefore,

the first step is to generate a temperature map (figure 5.3 (a)), which defines the

length of the spacer sticks for each time and sample depth. From that, a spatially

and time-resolved strain map (figure 5.3 (b)) is generated, from which the average

strain is calculated to fit the shape of the strain signal of the rare earths in the PM

phase. The excitation fluence was used as a fit parameter. The simulations also act

as a calibration for future simulations in the FM phase. The results of the simulation

are depicted as a continuous line, while the measured data is shown as data points.

Since thin-films are simulated, the Grüneisen parameters are Poisson corrected,

as described in section 2.2.1. The literature values used for the simulations can be

found in table 5.3.

(a) (b)

Figure 5.3: The sample depth into the material is shown on the 𝑥-axis of these two figures,

while the time delay is depicted on the 𝑦-axis. The two maps are plotted for the simulation

condition of Tb at 4.4mJ/cm
2
. (a) The temperature map illustrates, that the surface of the

sample directly after excitation is heated by roughly 300 K. The sample becomes colder

towards the inside and it is cooling over time. (b) The strain map depicts the propagation

of acoustic waves inside the sample.

Directly after excitation, the Tb layer is hotter than the Y layer, because it has a

higher absorption, which is illustrated in figure 2.11 (b). Since the simulation is

based on a one-temperature-model, the excitation of the Tb layer remains highly

inhomogeneous, as hot electrons, which would contribute to a more homogeneous

distribution of energy within the layer, are not taken into account.
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Simulated strain transients of the Dy sample

The simulated transient strain of the Dy layer can be observed in figure 5.4. The

initial expansion in the first 10 ps, driven by the strain wave which traverses the Dy

layer, is well captured in both shape and amplitude. This is true for both excitation

fluences of 1.1mJ/cm
2
and 3.4mJ/cm

2
. The transition of the strain wave into the

Nb layer is also visible as a decline in the strain signal at around 15 ps, as it is

only partially reflected at the interface, which leads to a decline in the strain wave

amplitude. Between 20 ps and 30 ps the strain signal stays roughly constant, as

in this time span the reflected strain wave travels through the Dy layer with a

constant amplitude. When the second reflection at the surface happens, the phase

shifted reflected strain wave by π induces a contractive strain, that leads to a faster

decay of the Dy strain signal, which can be observed at around 35 ps.
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Figure 5.4: The strain amplitude and shape of the simulations of the Dy sample in the PM

phase (continuous line) matches the measurements (data points) with a high accuracy.

The Nb layer expands at around 20 ps, which matches the timing of the strain

wave that enters the Nb layer. A slight mismatch of the experimental data and the

modelling can be observed at the strain transients of the 3.7mJ/cm
2
Nb simulation.

The minima of the strain waves perfectly overlap, while the maxima are offset by

a few ps, which indicates that the literature sound velocity used for modelling is

slower than the measured sound velocity.
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Simulated strain transients of the Tb sample

The strain of the Tb layer and the Nb layer of the Tb sample, depicted in figure 5.5,

show a similar behaviour to that of the Dy sample. The initial expansion of the Tb

layer followed by the decline in strain wave amplitude, as well as the expansion

of the Nb layer at 20 ps, is also prominent in the Tb sample. The timings of the

strain maxima of the Tb signal are approximately 5 ps later than at the Dy signal.

This is because the Dy sample is thinner, which can be seen in table 5.1. Tb and Dy

have almost the same sound velocity which can be seen in table 5.3, as according

to Graff [44], for a transversely isotropic material, the velocity of sound along the

𝑐-axis is given via 𝑣 =
√︁
𝑐33/𝜌 . A more detailed discussion can be found in ROYER

& Dieulesaint [45].
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Figure 5.5: The shape of the simulations of the Tb sample in the PM phase (continuous

line) matches the measurements (data points) well in both the Tb and Nb layer.

Compared to the Dy sample, the Tb sample has slightly more deviations between

the transient strain measurements and the modelling. Especially in the modelling

of the 4.4mJ/cm
2
, a second maximum becomes visible at 35 ps. This maximum

is pronounced far less in the experimental data. Since the timing of the second

maximum can be identified with the reflected strain wave shown in figure 5.3 (b)

at the Tb-Nb interface which reaches the surface of the sample, one can assume

this reflection to be less pronounced in the experiment compared to the simulation.

The reason why the strain wave is not reflected perfectly at the interface may be
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Ultrafast strain dynamics in the paramagnetic phase Section 5.2

due to possible interface roughness or impurities, which would explain why the

measured data show a less pronounced second strain maximum. Another deviation

between the transient strain modelling and measurement is the fluence, which is

estimated lower in the modelling than measured in the experiment. The phononic

Grüneisen parameters of Tb and Dy are very similar, as depicted in figure 4.5 (a),

which is why a similar transient strain would have been expected. This is why the

simulations predict a larger expansion of every layer at the given fluence, which

was not measured during the experiment. This lower expansion of the Tb layer

could also explain the less pronounced compression of the Nb layer due to the

overlying Tb layer earlier than 15 ps.

Simulated strain transients of the Gd sample

The qualitative behaviour of the transient strain of the Gd sample (figure 5.6) is

in line with that of the Tb and Dy samples, as the same sound dynamics can be

observed. A feature which was not present in the transient strain of the Tb and Dy

samples is the pronounced second maximum of the transient strain in the Gd layer.

This feature is also reproduced by the modelling.
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Figure 5.6: The shape of the simulations of the Gd sample in the PM phase (continuous

line) matches the measurements (data points) well for the Gd layer but less well for the Nb

layer.

The fluence of the simulations is far lower to achieve the same transient strain

amplitude. The reason for that could be that the transient strain measurements
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were conducted close to the magnetic ordering temperature of Gd. Consequently,

energy can be deposited in the magnetic system which induces a negative thermal

expansion, since the magnetic Grüneisen parameter of Gd is negative. Up to 25 ps,

the shape of the Nb strain is not predicted very accurately by the model, as a weaker

compression by the overlying Gd layer induces less pronounced sound dynamics in

the Nb layer. It seems that the Nb is already heated after 5 ps, which would suggest

a higher thermal conductivity of Gd compared to Tb and Dy. However, as shown

in Koç [46], Gd has a lower thermal conductivity than Dy.

Fluence comparison of the transient strains

Now the question arises why the Dy layer shows a larger strain than the Gd and

Tb layer normalised to the excitation fluence. According to table 5.3, the linear

thermal expansion of Dy is larger than for Tb and Gd. This does not fully explain

the observed behaviour, as the simulation already accounts for the larger linear

thermal expansion of Dy. While the simulation fluences align well with the Dy

measurements, they significantly underestimate the fluences of the Gd and Tb

samples.
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Figure 5.7: (a) The measured strain amplitude of Dy is the largest at a fixed fluence of

3.4mJ/cm
2
, followed by Tb and the Gd. (b) The excitation fluence for Gd and Tb has to be

increased to reach the strain amplitude Dy shows at a lower excitation fluence.

This indicates that the discrepancy in the strain amplitude between the samples is

caused by an experimental error of the measurements of the Gd and Tb sample,

e.g. a difference in fluence calibration. This is further supported by the fact, that

also the Nb layers in the different samples show different strain amplitudes at large

time delays for the same fluence, as already pointed out in figures 5.2 (b), 5.2 (d)
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and 5.2 (f). When all strain waves have propagated to the substrate, the strain

values should agree, since the Nb has the same linear thermal expansion in all three

samples. The differences in the strain amplitude could also indicate that the Gd

and Tb samples are oxidised, which could be why a higher fluence is necessary to

achieve the same strain. This is supported by the fact that the same strain amplitude

inconsistencies appear in the measurements of the ferromagnetic phase as well.

Both sources of error are equally likely, because the measurements of the Dy sample

were conducted 2 years before the measurements of the Gd and Tb sample and also

the samples are of different age. Besides the inconsistencies of the strain amplitude,

the shape of the strain is accurately captured by the simulations, which is shown

in figure 5.7.

Simulation parameters

The parameters used for the simulations can be found in table 5.3. The interfaces

between the layers of the sample are indicated as vertical dashed lines in figure 5.3.

The simulations have revealed that the layer thicknesses given in figure 2.1 are

not precise. The best simulation results were achieved with the layer thicknesses

presented in table 5.1.

Table 5.1: This table contains the layer thickness provided by the simulations opposing to

the layer thickness provided by the sample manufacturer.

layer proposed thickness simulated thickness

Gd sample

Y 10 nm 8 nm

Gd 40 nm 44 nm

Nb 50 nm 54 nm

Tb sample

Y 10 nm 9 nm

Gd 40 nm 43 nm

Nb 50 nm 54 nm

Dy sample

Y 10 nm 10 nm

Gd 40 nm 36 nm

Nb 50 nm 49 nm

Another relevant fact which concerns the simulation parameters is the [110] orient-

61



Chapter 5 Ultrafast magnetostriction

ation of Nb. Since the toolbox is designed for 1D simulations, the elastic constants

must be adjusted to match the proper propagation direction. For that, the elastic

tensor 𝐶 is changed in a way that it represents the elastic constants in the new

coordinate system, defined by a coordinate transformation of the basis vectors,

which corresponds to the [110] orientation. The old coordinate system consist of

the standard Cartesian basis vectors, represented as 𝐸:

𝐸 =
©­«
1 0 0

0 1 0

0 0 1

ª®¬. (5.1)

The new coordinate system, denoted by 𝐸new, is chosen to align with the [110]
direction, which is more convenient for the 1D simulation. It is defined by the

following transformation matrix:

𝐸new =
©­­«
− 1√

2

1√
2

0

0 0 1

1√
2

1√
2

0

ª®®¬. (5.2)

In this new coordinate system one gets a new elastic tensor𝐶new, which entries can

be used directly for the 1D simulations. The new values can be found in table 5.2.

Table 5.2: This table contains the elastic constants of Nb in the new coordinate system

which align with the [110] direction.

𝒄11 (GPa) 𝒄12 (GPa) 𝒄13 (GPa) 𝒄33 (GPa)

221.45 138.7 138.7 221.45

5.3 Ultrafast negative thermal expansion in the
ferromagnetic phase

The strain in the excited layer in the PM phase depends linearly on the fluence of

the pump laser pulse, which is not the case on the FM phase. In order to understand

the shape of the time-resolved strain of the rare earths in the FM phase, at least

a two-energy-model is needed, which differentiates the energy in the magnetic

subsystem from the energy in the electronic and phononic subsystem. Differences

in the demagnetisation timescales have been observed inWietstruk et al. [11], while
Tb has the shortest, followed by Dy and then Gd. As discussed in section 5.2.2
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Ultrafast negative thermal expansion in the ferromagnetic phase Section 5.3

for the PM phase, at nominally the same excitation fluence, both expansion and

contraction in the Dy sample in the FM phase have larger absolute values than in

the Gd and Tb sample. The time-resolved strain measurements in the FM phase

were conducted 80 K below the magnetic ordering temperature of the respective

rare-earth material.

5.3.1 Transient energy dynamics in Gd
The characteristics of the time-resolved strain in Gd cooled to 220 K (80 K below

𝑇𝐶, Gd), shown in figure 5.8 (a), are highly fluence dependent. At 1.4mJ/cm
2
, no

significant initial expansion is observed, but a contraction, which is smaller than

for higher fluences. At 3.4mJ/cm
2
, an initial expansion can be identified, followed

by a stronger contraction than at 1.4mJ/cm
2
. The initial expansion at 5.9mJ/cm

2

is far more pronounced than for lower fluences, but the contraction does not get

stronger by the same amount. This indicates that the magnetic system is near its

saturation point, as no more energy can be deposited in the magnetic subsystem,

since it is already fully disordered.
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Figure 5.8: (a) The fluence series of the time-resolved strain signal of the Gd layer in

the ferromagnetic phase was measured at 220 K, which is approximately 80 K below the

literature value of 𝑇𝐶, Gd. (b) The Nb layer of the Gd sample shows positive strain.

The reason for the initial expansion at higher fluences is that more energy is de-

posited in the phononic than in the magnetic subsystem, which leads to a positive

strain below 20 ps. Therefore, a one-energy-model cannot fully explain the ob-

served behaviour of the strain of the Gd layer, as the ratio of the energy deposited

by the laser in the phononic and magnetic subsystem changes with the initial
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temperature and fluence. The excitation energy is transferred over time from the

phononic subsystem into the magnetic subsystem. Additionally, the energy of the

phononic system can be transferred into the substrate, which is not possible for

the magnetic system (von Reppert et al. [24]). This non-equilibrium was previously

observed by Koç et al. [28] and has now been measured with significantly higher

temporal resolution. The measurement at 1.4mJ/cm
2
shows no initial expansion,

which indicates that the stress of the phononic and the stress of the magnetic

system are nearly compensating each other. After 30 ps, however, a contraction

can be observed, as the energy transport into the magnetic subsystem and the

resulting demagnetisation takes place on at least two different timescales, which is

in agreement with timescales measured in XMCD experiments on Gd by Wietstruk

et al. [11]. The strain of the Nb layer, depicted in figure 5.8 (b), remains positive

throughout the whole delay interval, as the expansion of the Gd layer does not

significantly compress it. At a fluence of 5.9mJ/cm
2
, the Gd layer is expected to

compress the Nb layer because of its higher strain amplitude. As in the PM phase,

the positive strain in the Nb layer is driven by regular thermal expansion and is

proportional to the excitation fluence.

5.3.2 Invar behaviour of Tb
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Figure 5.9: (a) The fluence series of the time-resolved strain signal of the Tb layer in

the ferromagnetic phase was measured at 140 K, which is approximately 80 K below the

literature value of 𝑇𝐶, Tb. (b) The Nb layer of the Tb sample shows positive strain at both

140 K and 170 K.

In contrast to the Gd layer, the strain of the Tb layer, measured 80K below 𝑇𝐶, Tb
(140 K) and shown in figure 5.9 (a), exhibits a less pronounced initial expansions,
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even at high excitation fluences. This is due to the faster second demagnetisation

timescale of Tb compared to Gd. It is also apparent that the magnetic system of Tb

is not saturated when it is excited with 5.9mJ/cm
2
, because the contraction there is

still much larger than at 3.4mJ/cm
2
. Interestingly, there is almost no contraction nor

expansion at 1.4mJ/cm
2
, which is unexpected in such a time-resolved experiment,

as the material shows an invar behaviour, i.e. minimal expansion or contraction

after excitation. The reason for that is illustrated in figure 5.10.
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Figure 5.10: (a) The short horizontal yellow arrow at a starting position of 140 K indicates

the excitation energy of 1.4mJ/cm
2
. This leads to almost no transient strain. (b) The

long horizontal orange arrow indicates the excitation energy of 2.8mJ/cm
2
with a starting

position at 140 K. This leads to a transient strain of almost 1‰. (c) The same transient

strain can be met with an excitation energy of 1.4mJ/cm
2
starting at 170 K, indicated by

the short red horizontal arrow. (d) Increasing the fluence or heating can therefore yield

the same transient strain result!

The strain of the Nb layer of the Tb sample in figure 5.9 (b) behaves similarly to
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the Nb layer of the Gd sample, as it expands after excitation. The excitation with

5.9mJ/cm
2
is not enough to induce a compression of the Nb layer, because the initial

expansion of the Tb layer is damped by the fast negative stress contribution of the

magnetic subsystem. The measured time-resolved strain signals of the Tb layer

for 2.8mJ/cm
2
at 140 K and 1.4mJ/cm

2
at 170 K are very similar. The quasi-static

temperature-resolved strain measurements presented in the previous chapter 4

give a prediction on how strong the strain should change in equilibrium. Near

equilibrium, every excitation fluence corresponds to a horizontal arrow length in

the figures 5.10 (a) to 5.10 (c), because a higher excitation fluence would lead to more

heating in the sample. In the case of figure 5.10 (a), no significant strain is expected,

because the quasi-static strain at 140 K is very similar to the quasi-static strain

at 170 K. When an excitation fluence of 1.4mJ/cm
2
is identified with an average

short term heating of 30 K, no significant strain in the time-resolved measurements

is expected. This is exactly the case, as the strain at 1.4mJ/cm
2
at 140 K shows

very little strain. Following this line of reasoning, it should be possible to achieve

the same strain result for a high fluence excitation at low temperatures and a low

fluence excitation at higher temperatures, because the horizontal arrows end at the

same spot. Exactly that is shown in figures 5.10 (b) and 5.10 (c). It is evident from

figure 5.10 (a) that their strain is in fact very similar.

5.3.3 Magnetostriction in Dy

0 20 40 60 80 100 120 140

1.0

0.5

0.0

0.5

St
ra

in
 

(1
0

3 )

1000 2000 3000 4000

Dy 1.1 mJ/cm2

Dy 3.4 mJ/cm2

Delay (ps)

(a)

0 20 40 60 80 100 120 140

0.0

0.5

1.0

St
ra

in
 

(1
0

3 )

1000 2000 3000 4000

Nb 1.2 mJ/cm2

Nb 3.7 mJ/cm2

Delay (ps)

(b)

Figure 5.11: The fluence series of the time-resolved strain signal of the Dy layer in the fer-

romagnetic phase was measured at 100 K, which is approximately 80 K below the literature

value of 𝑇𝑁, Dy. The Nb layer of the Dy sample shows positive strain.
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The strain of the Dy layer 80 K below 𝑇𝑁, Dy (100 K), shown in figure 5.11 (a),

is qualitatively similar to the strain of the Gd and Tb layer. The timescale of the

demagnetisation in Dy seems to be in between of the of Gd and Tb, which is revealed

by the comparison of the three materials at the same fluence in figure 5.12 (a).

5.3.4 Comparison of the demagnetisation timescales
The second timescales of demagnetisation can be well identified in figure 5.12 (a).

The comparison of the measurements conducted at the same fluence of 3.4mJ/cm
2
,

80 K below the respective magnetic ordering temperature provides the result that

the second demagnetisation in Tb is the fastest, followed by the Dy and then Gd.

An increase in the fluence (see figure 5.12 (b)) shows that the largest fraction of

the energy distributed into the magnetic subsystem occurs on the second timescale

of demagnetisation. This results in NTE, as the magnetic Grüneisen parameter��𝛤mag

�� > ��𝛤pho��. An initial expansion driven by the phononic subsystem is observed

at high excitation fluences, as the second timescale of the demagnetisation only

starts at approximately 15 ps.
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Figure 5.12: (a) The comparison of the demagnetisation timescales of Gd, Tb and Dy at

3.4mJ/cm
2
shows that Tb seems to have the shortest timescale of demagnetisation, followed

by Dy and then Gd. (b) The larger initial expansion of the Gd layer at a higher fluence of

5.9mJ/cm
2
also indicates that less energy is transferred into the magnetic subsystem.

The timescale of the demagnetisation in Tb is on the order of magnitude of 10 ps,

while the demagnetisation of Dy is slower, with more than 20 ps. Gd has the slowest

demagnetisation of these three rare-earth materials, with a timescale of around

50 ps. This is in agreement with the results of Wietstruk et al. [11], where a second
demagnetisation timescale of 8 ps for Tb and 40 ps for Gd is estimated.
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Table 5.3: The simulation parameters were taken fromHaynes [37], unless stated otherwise.

property Gd Tb Dy

crystal lattice structure hcp hcp hcp

𝑐-axis out-of-plane (Å) 5.7810 5.6966 5.6501

𝑎-axis in-plane (Å) 3.6336 3.6055 3.5915

𝑏-axis in-plane (Å) 3.6336 3.6055 3.5915

density 𝜌 (g/cm
3
) 7.901 8.230 8.551

lin. therm. expansion 𝛼⊥ (10
-6
/K) 10.0 12.4 15.6

lin. therm. expansion 𝛼∥ (10
-6
/K) 9.1 9.3 7.1

heat capacity 𝑐𝑝 at 25
◦
C (J/(kg K)) 236 182 173

therm. conductivity 𝜅 (W/(m K))
①

10.8 [47] 14.8 [47] 11.7 [47]

refractive index 𝑛 + 𝑖𝑘 from [48] from [48] from [48]

𝑛 1.99 2.36 2.68

𝑘 3.30 3.21 3.21

elastic constants at 300 K (GPa) from [38] from [39] from [39]

𝑐13 21.3 22.99 22.3

𝑐33 71.9 72.25 78.1

property Y Nb Al2O3

crystal lattice structure hcp bcc [1] hcp

𝑐-axis out-of-plane (Å) 5.7318 4.67 [1] 12.9933 [49]

𝑎-axis in-plane (Å) 3.6482 4.67 [1] 4.7602 [49]

𝑏-axis in-plane (Å) 3.6482 3.30 [1] 4.7602 [49]

density 𝜌 (g/cm
3
) 4.469 8.57 3.97

lin. therm. expansion 𝛼⊥ (10
-6
/K) 19.7 6.8 [50] 7.07 [51]

lin. therm. expansion 𝛼∥ (10
-6
/K) 6.0 6.8 [50] 6.2 [51]

heat capacity 𝑐𝑝 at 25
◦
C (J/(kg K)) 298 265 657.22 [52]

therm. conductivity 𝜅 (W/(m K))
①

24.8 [47] 53.7 [47] 58.33 [53]

refractive index 𝑛 + 𝑖𝑘 from [48] from [48] from [37]

𝑛 2.10 2.15 1.76

𝑘 2.67 3.37 0

elastic constants at 300 K (GPa) from [54] from [55] from [56]

𝑐13 21 138.7 116

𝑐33 76.9 245.6 501

①
All values were taken at 300 K, except for Yttrium, which was taken at 160 K.
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Conclusion

Quasi-static and transient strainmeasurements at the thin-film rare-earthmetals Gd,

Tb and Dy have been conducted. The temperature-resolved strain measurements

in the range of 50 K to 385 K were carried out at BESSY II utilising X-ray diffraction.

It was shown that the thin-film rare-earth metals Gd, Tb and Dy exhibit negative

thermal expansion below their magnetic ordering temperature. Quasi-static strain

measurements allowed for the extraction of both phononic and magnetic Grüneisen

parameters. The extracted magnetic Grüneisen parameter of Dy has a constant

value of 𝛤mag, Dy = −3.1, while the value is temperature-dependent for Gd and Tb.

For Gd, a magnetic Grüneisen of 𝛤mag, Gd = −2.5 was determined between 220 K and

320 K. The magnetic Grüneisen parameter of Tb is estimated to be 𝛤mag, Tb = −2.7

between 170 K and 220 K. These values are of slightly higher magnitude compared

to Koç et al. [28], because I took the anisotropy of the elastic constants into account.
If I adjusted the phononic Grüneisen parameter to the high temperature limit, this

discrepancy would be amplified further.

I observed ultrafast time-resolved magnetostriction in thin-film rare-earth metals at

our laboratory based plasma X-ray source and utilised the techniques of reciprocal

space mapping and reciprocal space slicing, including a transient RSS correction.

Picosecond strain dynamics and non-equilibrium energy transport on a nanosecond

timescale have been determined via the transient strain measurements, which I

also simulated with the udkm1Dsim toolbox (Schick [41]). I observed ultrafast

NTE, 80 K below the magnetic ordering temperature of Gd, Tb and Dy. With

the highest excitation fluences, the Gd layer showed a saturation of the magnetic

subsystem, as no further energy could be deposited in the fully disordered spin

system. In contrast, Tb showed no saturation and for Dy, no such measurements

were conducted. The delayed laser-induced contraction of Gd indicates a slower

demagnetisation compared to Tb and Dy. The demagnetisation timescale of Tb

is around 10 ps, the demagnetisation timescale of Dy is slower than 20 ps, and

the demagnetisation timescale of Gd is roughly 50 ps. Of special interest is the

ultrafast invar behaviour of the strain of the Tb layer, under the condition of a

certain excitation fluence and starting temperature. When the Tb layer is excited
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with 2.8mJ/cm
2
at a starting temperature of 140 K, it yields approximately the same

strain as an excitation with 1.4mJ/cm
2
at 170 K. If the Tb layer is excited with

1.4mJ/cm
2
at 140 K, essentially zero expansion is measured, i.e. we observe an

ultrafast invar effect, where the rare earth is heated, but the energy does not lead

to any stress or strain.

Outlook

In addition to the quasi-static strainmeasurements presented in chapter 4, temperature-

resolved strain measurements at the Gd and Tb layer were performed with an

applied external 140mT in-plane magnetic field. The magnetic field should raise

the Curie temperatures of Gd and Tb, as the magnetic order can be maintained up to

higher temperatures. The results of these measurements are depicted in figure 6.1
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Figure 6.1: (a) A possible forced magnetostrictive effect below the magnetic ordering

temperature of the 40 nm thin-film Gd has been found when an external 140mT magnetic

field is applied. (b) The quasi-static strain data for the Tb layer has a signal-to-noise ratio

that is too low to make a reliable statement about the effect of forced magnetostriction.

The forcedmagnetostrictive effect could not be confirmed yet, because the temperature-

resolved strain measurements of the Gd and Tb layer with and without an applied

external magnetic field provide very similar results. In figure 6.1 (a), the strain

decreases at a few Kelvin higher temperatures, when an in-plane magnetic field

is applied, but above the magnetic ordering temperature, no clear trend can be

identified. In order to achieve a more significant effect, a stronger external in-plane

magnetic field would be needed to verify the effect of forced magnetostriction.
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Another open question is why the magnetic strain behaves differently in Gd, Tb

and Dy. The magnetic strain was already quantified by Kittel [57], who presented

equation (6.1):

𝜂mag =
𝑟

𝑌

𝜕𝐽

𝜕𝑟
𝑀2

cos (𝜙) ∼ 𝜕𝐽

𝜕𝑟
. (6.1)

Here, 𝑟 is the inter atomic distance which is not necessarily the atomic distance

out-of-plane, 𝑌 is Young’s modulus and 𝑀 is the magnetisation. The magnetic

strain 𝜂mag is proportional to the change of the exchange coefficient 𝐽 (𝑟 ), which
can be described by the RKKY interaction (see section 2.1). The exchange coefficient

and its derivative in respect to 𝑟 for Gd, Tb and Dy is illustrated in figure 6.2.
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Figure 6.2: The exchange coefficient 𝐽 (𝑟 ) has been calculated, under the assumption of a

spherical Fermi surface with the radius 𝑘𝐹 .

The calculated exchange coefficients for Gd, Tb, and Dy are very similar, and so

are their derivatives. This is based on the assumption that the Fermi surfaces are

perfect spheres, which is not the case in reality. The Fermi radius 𝑘𝐹 was calculated

via:

𝑘𝐹 =
(
3𝜋2𝑛

) 1

3 . (6.2)

𝑛 is the electron number density, which is similar for all three rare earths. In a first

approximation, the differences in 𝜕𝐽/𝜕𝑟 do not appear to account for the variation
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in magnetic strain. However, a more accurate representation of the actual Fermi

surfaces could alter this conclusion. According to equation (6.1), the magnetic strain

𝜂mag is also proportional to𝑀
2
, which is different for Gd, Tb and Dy. Equation (6.1)

also does not account for nearest neighbour interactions, which at least for Dy have

to be relevant, as it is a helical antiferromagnet. To address these uncertainties,

a valuable next step would be to model the ultrafast transient strain below the

magnetic ordering temperatures of Gd, Tb, and Dy. Simulations of this kind have

already been conducted for Dy by von Reppert et al. [24]. The modelling for Gd

and Tb proved to be a challenge, as the magnetic Grüneisen parameters for these

materials are not constant. A possible solution is to approximate the magnetic

Grüneisen parameter with two linear functions.
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