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Overview
|

* Antibiotics and Antimicrobial resistance
* The bacterial cell envelope
* Host-defence Peptides

* Antimicrobial Polymers

* Polymer Disinfectants & Antifouling




Learning objectives
|

* Understand how grave the problem of AMR is and be able to discuss the reasons
behind

* Understand the principal architecture of bacterial cells and how they differ from
mammalian cells

* Know how host-defence peptides work

* Understand how antimicrobial polymers work and be able to discuss how their
properties are influenced (and connected)

* Be able to explain passive and active antifouling and discuss advantages and
downsides



A brief History of Antibiotics
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First Antibiotic discovered by Paul
Ehrlich (1909): Arsphenamin

* ZWEIHUNDERT DEUTSCHE MARK

Antibiotics are weapons designed
by microorganisms

Wound treatment in ancient cultures Discovery of Penicilin by Alexander

Fleming (1928)

https://en.wikipedia.org/wiki/Antimicrobial_resistance




End of the Antibiotic era

https://en.wikipedia.org/wiki/Antimicrobial_resistance



Antimicrobial Resistance (AMR)

Over-prescribing Patients not finishing Over-use of antibiotics in Poor infection control Lack of hygiene and poor
of antibiotics their treatment livestock and fish farming in hospitals and clinics sanitation

www.who.int/drugresistance

J. O'Neill, Antimicrobial resistance : tackling a crisis for the health and wealth of nations, Wellcome Trust, London, 2014.

World Health Organization (WHO), 2018, Report on Surveillance of Antibiotic Consumption.



Resistance on the March

ANTIBIOTIC UPS AND DOWNS 5
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J. O'Neill, Antimicrobial resistance : tackling a crisis for the health and wealth of nations, Wellcome Trust, London, 2014.

»Antibiotic resistance: An infectious arms race“ Nature, 509, doi:10.1038/509S2

World Health Organization (WHO), 2018, Report on Surveillance of Antibiotic Consumption.
Murray CJL, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399, 629-655 (2022).
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A shrinking Arsenal..

1953: Glycopeptides, Nitroimidazoles, Streptogramins <« P 1955: Cycloserine, Novobiocin
1952: Macrolides < P 1957: Rifamycins
1950: Pleuromutilins P 1961: Trimethoprim
1948: Cephalosporins <
1947: Polymyxins, Phenicols <
1946: Nitrofurans <«
1945: Tetracyclines <
1943: Aminoglycosides, Bacitracin (topical) <« i
1932: Sulfonamides « :
1928: Penicillins <4

P 1962: Quinolones, Lincosamides, Fusidic acid
. P> 1949: Fosfomycin
P 1971: Mupirocin reaCtgrOUp.Org
P 1974: Carbapenems
P 1978: Oxazolidinones
P 1979: Monobactams
! P 1987: Lipopeptides

DISCOVERY VOID

© ReAct Group 2015

* Most large companies have abandoned antibacterial drug discovery

* Current research is driven by
* Small companies
* Academia
e Public funding



Antimicrobial Resistance
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Bacterial Cell

Hartlieb et al. ACS Appl.
Mater. Interfaces 2017, 9,

40117-40126.




The bacterial cell envelop
|

e Bacterial (and fungal) cells are more net-negative than mammalian cells

* However: large difference in architecture between gram pos./neg.
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Gram negatlve Bacteria Gram-positive Bacteria Mammalian cell




Anionic components of the cell envelop
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Inspiration: Host-defence peptides (HDPs)

N
* Ancient motifs to fight microorganism s
* Part of innate immunity
* Divers and large class of biomolecules U-37 L M
~g,

e Often: Facial amphiphilicity
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Mookherjee, N., Anderson, M.A., Haagsman, H.P. et al. Antimicrobial host defence peptides: functions and clinical potential. Nat

Rev Drug Discov 19, 311-332 (2020). https://doi.org/10.1038/s41573-019-0058-8



HDP: mechanism of action
.

CHDP/AMP

R

Membrane translocation Membrane perturbation » Bacterial lysis

Models
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Bacterial killing

Mookherjee, N., Anderson, M.A., Haagsman, H.P. et al. Antimicrobial host defence peptides: functions and clinical potential. Nat

Rev Drug Discov 19, 311-332 (2020). https://doi.org/10.1038/s41573-019-0058-8



FDA-approved HDPs

e Usually last-resort
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* Some have significant side- < Loy J/E\/L
effects b . e S ot
Gramicidin Daptomycin Colistin
M.W. = 1882 M.W. = 1621 M.W. = 1155
Ty/2 = Not available Ti/2 = 8-9 hours Ti/2 =5 hours

MoA: Membrane poration

MoA: Membrane lysis

MoA: Membrane lysis

Vancomycin Oritavancin Dalbavancin Telavancin
M.W. = 1449 M.W. = 1793 M.W. = 1817 M.W. = 1756
Ty/2=17.5 days T1/2 =195.4 hours Ty/2 = 14 days T2 = 8 hours
MoA: Inhibitor of cell wall MoA: (1) Membrane lysis MoA: Inhibitor of cell wall MoA: (1) Membrane lysis
synthesis (2) Inhibitor of cell wall synthesis synthesis (2) Inhibitor of cell wall synthesis



Excurse: MIC & Selectivty
|

Hemotoxic concentration (Hc,) \

Selectivity =

7 A

# High concentrations are beneficial

Minimum inhibitory concentration (MIC.)

é )

* Selective interaction with
bacteria over mammalian cells

e High values are aspired

A ) ’

- Low concentrations are beneficial /

PhD defence of Dr. Anne Lehnen 36




Antimicrobial polymers: early steps
|
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G. N. Tew, D. Liu, B. Chen, R. J. Doerksen, J. Kaplan, P. J. Carroll, M. L. Klein, W. F. DeGrado. Proc. Natl. Acad. Sci. 2002, 99, 5110-5114.




Is a helix necessary?
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* Facial amphiphilic isomer least active
5 >100
» Best activity for scrambled sequence

M. A. Schmitt, B. Weisblum, S. H. Gellman. J. Am. Chem. Soc. 2004, 126, 6848-6849.



Polymers adopt facial amphiphilic structure on the membrane
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E. F. Palermo, S. Vemparala, K. Kuroda. Biomacromolecules 2012, 13, 1632-1641.



Types of Antimicrobial Polymers
|
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e Usually copolymer from hydrophobic and cationic monomers

* Primary amine and guanidine functions work best



Polymeric Antimicrobial Peptide Mimics

Amphiphilic Balance Spatial Organization

»I'jil o @ @ ® @
o O/\/NH3
ﬁf PIIDIOIOD G

/\/OH
0~ o Sen et al., Angew. Chem. Int. Ed. 2008, 47, 1250-1254.
Lienkamp et al., Chem. Eur. J. 2018, 24, 8217-8227.

Boyer et al., Macromolecules 2020, 53, 631-639. Lienkamp et al., Macromol. Chem. Phys. 2019, 220, 1900346.
Tiller et al., Macromol. Biosci. 2015, 15, 1710-1723.

Gellman et al., J. Am. Chem. Soc. 2014, 136, 4410-4418.
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Polymer Length Type of Charge Sequence Control
C) | ®
0000000080080 NH, NH 0080000080860 00 80000
\(\/ \(\/ .
H NH f!l ®
00000000 X re XM 0000000000 8888 O
NH
Kuroda et al., Bioconj. Chem., 2017, 28, 1340-1350. Hedrick, Yang, et al., Nat. Commun. 2018, 9, 917. Hartlieb, Perrier et al., ACS Appl. Mater. Interfaces 2017, 9,
Boyer et al., Polym. Chem. 2018, 9, 1735-1744. Palermo, Kuroda et al., Biomacromolecules 2009, 40117-40126.
10, 1416-1428. Boyer et al., Angew. Chem. Int. Ed. 2018, 57, 4559-4564.

Agarwal et al., Macromol. Biosci. 2013, 13, 242-255.  Anastasaki et al., Polym. Chem. 2020, 11, 84-90.



Structural aspects
|

* Polymer topology has a huge impact on

@ @ @ activity (selectivity)

Statistical Diblock Multiblock
* Example: Bottle brush copolymers
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(Hyper)brached Cyclic
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Architecturalcomplexity-----

Bottle




From ,grafting-through” to ,grafting-from*“
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Influence of the Aspect Ratio
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Polymer Disinfectants

e
I;;: Cle R! R?2 R3
CH,~N—R?
H, =CH@ !, 1 | CH,CH, CH,CH, CH,CH,
2 | CH; CH; CH(CH,),
3 | cu, CH, (CH,)>CH,
4 | CH, CH; (CH;),CH;
SUMMARY:

Various poly(trialkyl-3-(and 4-)vinylbenzylammonium chloride)s were prepared and their
antibacterial activities were assessed by the conventional spread plate method and the viable
counting method. They are in general more active against Gram-positive bacteria such as
Bacillus subtilis and Staphylococcus aureus than against Gram-negative bacteria such as
Escherichia coli, Aerobacter aerogenes and Pseudomonas aeruginosa. Compounds with the
Iongest alkyl chain studied (dodecyl) were found to exhibit particularly high activity, and this
was ascribed to the contribution of the increased hydrophobicity of the compounds to the
activity. The most significant finding was that the polymers are more active than the
corresponding monomers. The higher activity of the polymers was discussed and interpreted in
terms of their greater contribution to each elementary process in the cidal action: their favored
adsorption onto the bacterial cell surface and the cytoplasmic membrane with subsequent
disruption of its integrity.

Tomiki Ikeda, Shigeo Tazuke, Makromol. Chem. 185,869 - 876 (1984)



Polymer Disinfectants Il
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Polyhexamethylene biguanide (PHMB) Polyhexamethylene guanidine (PHMG)
* Disinfectants for wounds and skin  Used in humidifier disinfection up to 2011
* Use in post-surgical treatments and eye « pulmonary toxicity of aerosols
drops * Korean government officially recognized
* Also used in pool/spa disinfection 1,814 dead and 7,837 injured victims (likely
* Approved to use as treatment against more than 20.000 deaths, up to 1 Mio health
Acanthamoeba keratitis (eye infection) damages)

Wikipedie.com 46




Antifouling: Biofilms
|

* Biofilms form on almost any surface
* Consist of biomolecules, organisms (bacteria, fungi, ..) and extracellular matrix
* Significant higher treatment resistance of bacteria etc. in biofilms

 Specifically dangerous for implants and medical devices (e.g. catheters)

Becker et al. ACS Macro Lett. 2018, 7, 1, 16—25



Antifouling strategies
|

* Passive Antifouling

*  Prevention of attachment of
biomolecules or organisms

repelling
 No killing of microorganisms %
E i
 Based on strong hydration of the
interface \ |
& %
* Active Antifouling
. ) i S
i B|OC|da| P0|ymer on the |nterface or exclusion electrostatic low surface biocide contact-active
steric repulsion repulsion energy releasing biocidal

release of biocidal molecules

 Killing of microorganisms in close
vicinity to surface

Rodriguez-Hernandez J. (2017) Antimicrobial/Antifouling Surfaces Obtained by Surface Modification. In: Polymers against Microorganisms. Springer, Cham.



Passives Antifouling

|
B

* Hydrated interface &

%
* No sharp boundary but density gradient :\ F
e Requires very hydrophilic polymers (PEG, PMeOx, ...) | WPLANT SURFACE

C ¥ ..

* No anchor points for microorganisms to attach to & 1%

Also reduces binding of biomolecules
Grafting density is important for efficiency [ MPLANTSURFACE ]

0 OH y
—0 O-— H\/N—Polymer
L\,oﬂ,&
3

Ko o o
| )3 Polymer-NH, )
| glass | - ---o:(]?.i—o--- s

\

Lowe et al. Polym. Chem., 2015,6, 198-212
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NN * Quartz-crystal Microbalance
04\@ with Dissipation measurement
(0]
OH . .
* Piezoelectric measurement of
sensor vibration
®
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* Highly sensitive to sensor mass

Detection of ng/cm? in flow

1200{ Polymer Au
. 1 — PEtOx Surface Ads. mass Remaining BSA
“"g 1000 A 1PBS BSA ——P,Cat coating (BSA add.) (after PBS wash)
> ' —— P,Cat-El
% 800 1 1 ng cm-2 % ng cm-2 %
w 4
£ 6004 '“' o, T Au 555 100 424 76
©
LN — \
S 400
2 L
<
200 T P,Cat 20 4 * *
0 PBS P,Cat-El 5 1 * *
0 50 100 150 200 250 300 350

) : N. Lidecke, M. Bekir, S. Eickelmann, M. Hartlieb, H. Schlaad. ACS
Time (min)

Appl. Mater. Interfaces 2023, 15, 19582-19592.



Active Antifounng \ Dead bacterla
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© Contactklllmg b /O / brushes

PEGI/lysine
— antifouling
sub-layer

Often membrane lytic (amphiphilic) g B rmomain o N dyarophobic

PTMG/IPDI

» Surface-bound antimicrobial polymers

Selectivity is not so important without
leakage of polymer

Soft segment, Soft segment,

* |ssue: first wave is killed and debris He, W., Zhang, Y., Li, J. et al. Sci Rep 6, 32140 (2016)
attaches to the surface — perfect —— —
ground for biofilm

1. celllysis upon N,N-Dimethyl-dodecylammonium

 Regeneration (detachment of layers or o )22 <A TR J\A

self-cleaning) necessary cazyme F FolyCahott et

~0
o o
OTos
n

biodegradable backbone
Cellulose

Bieser AM, Thomann Y, Tiller JC. Macromol Biosci. 2011;11(1):111-21



Take-home message
|

* Antimicrobial resistance is a grave issue endangering the progress of medical science
from the last ~ 70 years

* HDPs are part of our innate immunity and have a peculiar way to kill bacteria (mostly by
membrane interaction)

* Antimicrobial polymer mimic HDPs but are much more modular

» Different parameters influence their activity and selectivity, to date there is now AP in
clinics

* Polymer disinfectants are used in application but work much less selective (and can be
dangerous if used wrong)

 Biofouling is a problem in medicine (and far beyond) which requires specifically
engineered surfaces to overcome

* Active as well as Passive strategies exist and have their advantages and disadvantages
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