

Speech planning in preschoolers' picture naming

Elina Rubertus a, Aude Noiray a, Christine Mooshammer b

^a University of Potsdam, ^b Humboldt-University of Berlin rubertus@uni-potsdam.de

Introduction

In adults, structural, frequency, and probabilistic characteristics of words have been shown to either facilitate or inhibit the planning (early internal organization) of word production [1]. In children however, little is known about their effects on production and its planning, as well as how these may change with increasing language practice.

Research questions Do 4-year-old German children show the same effect in the investigated factors as the adults?

Does each factor influence the naming process on a lexical or a postlexical stage?

Assumption Simple naming → lexical & postlexical processes Delayed naming → only postlexical processes [2] Based on previous findings mainly in adults:

Predictions

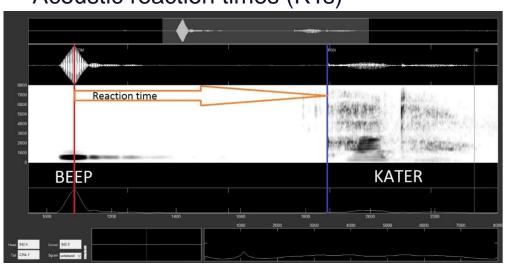
Factor	Direction of the effect	Simple naming	Delayed naming	Reference
Initial segment	/t/ < /k/ < /ʃ/	✓	✓	[3], [4]
	/i/ < /a/ < /u/			
Syllable structure	CV = CCV < V	✓	✓	[1], [5], [6]
Phonotactic probability	high < low	✓	✓	[1]
Neighborhood density	high < low	✓		[1], [2]
Word frequency	high < low	✓		[1], [7]
Syllable frequency	high < low	✓		[1], [8], [9]

Method & Procedure

Participants 6 healthy 4-year-olds & 6 healthy adult controls, all native German speakers

Task Picture naming in SIMPLE and DELAYED condition:

Target is visually presented, starting prompt visually and auditorily


- simultaneous with picture (SN)
- or delayed (DN)

Adults produced schwa prior to

the prompt (avoiding preparation), too demanding for children. Stimuli Pictures of 15 disyllabic words (except for Stuhl, "chair"), tense cardinal vowels /i/, /a/, /u/ in stressed first syllable, varying first syllable structure (V, CV, CCV, CCVC):

- 02		/i/	/a/	/u/
V		lgel "hedgehog"	Adler "eagle"	Ute (proper name)
CV	/k/	Kiwi	Kater "tomcat"	Kugel "sphere"
	/t/	Tiger	Tafel "blackboard"	Tube
	/ ʃ/	Schienen "rails"	Schale "bowl"	Schule "school"
CCV(C)		Spiegel "mirror"	Stapel "pile"	Stuhl "chair"

Measurements Acoustic reaction times (RTs)

Statistics

- Linear Mixed Models with participant as random factor
 - Fixed effects: Syllable structure (V, CV, CCV, CCVC), Initial segment (/t/, /k/, /ʃ/, /a/, /i/, /u/)
 - Dependent variable: Acoustic RT
- Linear Models: Correlation of averaged RT per stimulus with
 - phonotactic probability,
 - phonological neighborhood density,

 - word frequency, syllable frequency

Results Task Children Adults Parameter regressions Simple Naming Syllable Structure Parameter regressions Syllable Structure **Parameter** SyllableStructure SyllableStructure BiphoneFrequency FirstSyllableFrequency MeanSyllableFrequency NeighborhoodDensity NeighborhoodFrequency PhoneFrequency TransitionalProbability WordFrequency BiphoneFrequency FirstSyllableFrequency MeanSyllableFrequency NeighborhoodDensity NeighborhoodFrequency PhoneFrequency TransitionalProbability WordFrequency CV CCVC * * * Stops Stops Fricatives Fricatives **Initial Segment** Initial Segment **Naming Condition** nitialSegment Lexical & p-values: *** 500 *** < 0.001 **NamingCondition** 1000 **Postlexical** ** < 0.01 * < 0.05 (SE) 750-Processes ° < 0.1 Consonants Consonants *** Syllable Structure Syllable Structure **Delayed Naming** 500 CCV CCVC 500-Children Adults Parameter regressions Parameter regressions Stops **Fricatives** Fricatives **Initial Segment** Initial Segment **Parameter** BiphoneFrequency FirstSyllableFrequency MeanSyllableFrequency NeighborhoodDensity NeighborhoodFrequency PhoneFrequency TransitionalProbability WordFrequency BiphoneFrequency FirstSyllableFrequency MeanSyllableFrequency NeighborhoodDensity NeighborhoodFrequency PhoneFrequency TransitionalProbability WordFrequency InitialSegment InitialSegment Only **Postlexical**

Discussion & Conclusion

General findings

Processes

- Longer RTs in children than adults
- Longer RTs in SN than DN
- More variability in children than adults **Syllable Structure** No effect for stops → issue of measuring
- acoustic data only
- Effect of CCVC with caution → only 1 item CV < V effect present only in adults' DN
- → masked by lexical/memory effects in SN?

Initial Segments

Vowels

Caution for vowels: only 1 item each

Consonants

- /i/, /a/ < /u/ (Ute!) stable for adults, trend in children's SN disappears in DN
 - Lexical/memory effect for kids
 - Postlexical process for adults
- /ʃ/ < stops → issue of measuring acoustic data only
- **Lexical / phonological parameters**
- Parameters measured post-hoc → no even distribution!
 - · Most stable predictor: Positional phone frequency → surprising: low < high
- Syllable frequency highly correlated → surprising: low < high
- Effects get weaker in DN
- No significant effect in children → too high variability? Task too demanding?
 - Different organization of speech? Parameter values not appropriate (adult data bases)?

Conclusion This first pilot study shows differences between speech planning in 4-year old children and adults. High variability suggests instable representations and an effect of limited practice. However, more precise deductions would need a larger participant cohort, the focus on one or two controlled parameters, and articulatory measures.

Vowels

Consonants

	Simple Naming			Delayed Naming		
Factor		Found in	Found in		Found in	Found in
	Expected	Children	Adults	Expected	Children	Adults
		(p<0.05)	(p<0.05)		(p<0.05)	(p<0.05)
Syllable structure	CV = CCV < V	Χ	CCV < CV	CV = CCV < V	Χ	CV = CCV < V
Initial segment	/t/ < /k/ < /	/ʃ/ < /t/, /k/	/ʃ/ < /t/, /k/	/t/ < /k/ < /J/	X	/ʃ/ < /t/, /k/
	/i/ < /a/ < /u/	Χ	/i/, /a/ < /u/	/i/ < /a/ < /u/		/a/ < /i/ < /u/
Phonotactic probability	high < low	Χ	(low < high)	high < low	X	Χ
Neighborhood density	high < low	Χ	X	Χ	X	Χ
Word frequency	high < low	Χ	Χ	Χ	X	Χ
Syllable frequency	high < low	Χ	low < high	Χ	Χ	(low < high)

[1] Mooshammer, C., Goldstein, L., Nam, H., McClure, S.

Saltzman, E., & Tiede, M. (2012). Bridging planning and execution: Temporal planning of syllables. Journal of Phonetics, 40, 374-389. doi: 10.1016/j.wocn.2012.02.002

[2] Grainger, J., Spinelli, E., & Ferrand, L. (2000). Effects of baseword frequency and orthographic neighborhood size in pseudohomophone naming. Journal of Memory and Language, 42, 88-102. doi: 10.1006/jmla.1999.2675

[3] Fox, A. V. & Dodd, B. J. (1999). Der Erwerb des phonologischen Systems in der deutschen Sprache. Sprache-Stimme-Gehör, 23, 183-191. [4] Kessler, B., Treiman, R., & Mullenix, J. (2002). Phonetic biases in voice key response time measurements. Journal of Memory and Language, 47, 145-171.

[5] Levelt, C. C., Schiller, N. O., & Levelt, W. J. (2000). The acquisition of syllable types. Language Acquisition, 8, 237-264. doi: 10.1207/S15327817LA0803_2 [6] Nam, H., Goldstein, L., & Saltzman, E. (2009). Self-organization of syllable structure: A coupled oscillator model. In F. Pellegrino, E. Marsico, I. Chitoran, & C. Coupé (Eds.), Approaches to

phonological complexity (pp. 299-328). Berlin: Mouton de Gruyter [7] Forster, K. I. & Chambers, S. M. (1973). Lexical access and naming time. Journal of Verbal Learning and Verbal Behavior, 12, 627-635. doi: 10.1016/S0022-5371(73)80042-8 [8] Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 1-75. [9] Laganaro, M. & Alario, F.-X. (2006). On the locus of the syllable frequency effect in speech production. Journal of Memory and Language, 55, 178-196. doi: 10.1016/j.jml.2006.05.001 [10] Aichert, I., Marquardt, C., & Ziegler, W. (2005). Frequenzen sublexikalischer Einheiten des Deutschen: CELEX-basierte Datenbanken. Neurolinguistik, 19, 55-81.

References & Acknowledgements