As shown in previous chapters, the MSD is directly connected to the velocity autocovariance
\[ \langle (x(t-t_0)-x(t_0))^2 \rangle = 2 \int_{0}^{t} \mathrm{d}t_1 \int_{t_1}^t \mathrm{d}t_2 \langle \dot{x}(t_0+t_1) \dot{x}(t_0+t_2) \rangle = 2 \int_{0}^{t} \mathrm{d}t_1 \int_{t_1}^t \mathrm{d}t_2 C(t_2-t_1) \sigma^2(t_0+t_1) \]The ensemble-averaged MSD with a fixed initial time, e.g. x(t0)=0, depends on non-stationarity
By calculating the time average, the integral over the total time eliminates this time dependence
\[ \langle \delta^2(\Delta) \rangle = \frac{2}{t-\Delta} \int_0^{t-\Delta} \mathrm{d}t_0 \int_{0}^{\Delta} \mathrm{d}t_1 \int_{t_1}^\Delta \mathrm{d}t_2 \langle \dot{x}(t_0+t_1) \dot{x}(t_0+t_2) \rangle \] \[\;\;\;\;\;\;\;\;\;\;\; = \frac{2}{t-\Delta} \int_0^{t-\Delta} \mathrm{d}t_0 \int_{0}^{\Delta} \mathrm{d}t_1 \int_{t_1}^\Delta \mathrm{d}t_2 C(t_2-t_1) \sigma^2(t_0+t_1) \]Example: power-laws: Using the exponents defined in the previous chapters J, M, and L, it can be shown \[ \langle x^2(t) \rangle \sim t^{2J+2M+2L-1} \;\;\;\;\;\; \langle \delta^2(\Delta) \rangle \sim \Delta^{2J} \]
Autocorrelation function and time-averaged MSD both oscillate - no nice measures for the frequency of oscillation
The autocorrelation function is useful for theoretical considerations and interpretations, but not always suitable for data analysis
The Power Spectrum is the square of the Fourier transform of the signal; it therefore nicely resolves oscillations
\[ X(\nu) = \int \mathrm{d}t\; x(t) e^{-\frac{2\pi i}{N}t\nu} \] \[ x(t) = \int \mathrm{d}\nu\; X(\nu) e^{\frac{2\pi i}{N}t\nu} \] \[ |X(\nu)|^2 = X(\nu)\overline{X}(\nu) = \int \mathrm{d}t^\prime \int \mathrm{d}t\; x(t) x(t^\prime) e^{-\frac{2\pi i}{N}(t-t^\prime)\nu} \]The connection between the autocorrelation function and the power spectral density can be calculated straightforwardly. The autocorrelation function is \[C(\Delta)=\int_{-\infty}^\infty \overline{x}(t) x(t+\Delta) \mathrm{d}t\] The Fourier transform of X and its complex conjugate is \[ x(t)=\int_{-\infty}^\infty X(\nu) e^{-2\pi i \nu t} \mathrm{d}\nu \mbox{ } \mbox{ } \mbox{ and } \mbox{ } \mbox{ } \overline{x}(t)=\int_{-\infty}^\infty \overline{X}(\nu) e^{2\pi i \nu t} \mathrm{d}\nu\] If we now plug in the Fourier transform into the definition of the autocorrelation function, we get the Fourier transform of the power spectrum \[C(\Delta) = \int_{-\infty}^\infty \left[ \int_{-\infty}^\infty X(\nu) e^{-2\pi i \nu (t+\Delta)} \mathrm{d}\nu \right] \left[ \int_{-\infty}^\infty \overline{X}({\nu'}) e^{2\pi i \nu' t} \mathrm{d}\nu' \right] \mathrm{d}t \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\] \[\mbox{ } = \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \overline{X}(\nu) X({\nu'}) e^{-2\pi i (\nu'-\nu) t} e^{-2\pi i \nu \Delta} \mathrm{d}t \mathrm{d}\nu \mathrm{d}\nu = \int_{-\infty}^\infty \int_{-\infty}^\infty \overline{X}(\nu) X({\nu'}) \delta(\nu'-\nu) e^{-2\pi i \nu' \Delta} \mathrm{d}\nu \mathrm{d}\nu^\prime \] \[= \int_{-\infty}^\infty \overline{X}(\nu) X({\nu}) e^{-2\pi i \nu \Delta}\mathrm{d}\nu = \int_{-\infty}^\infty |X({\nu})|^2 e^{-2\pi i \nu \Delta}\mathrm{d}\nu = \mathcal{F}_\nu \left[ |X(\nu) |^2 \right](\Delta) \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \]
Autocorrelation function and power spectrum for
Where the wavelet Psi is a function
The parameter k can resolve non-stationarities in the signal
Is a scaling function similar to the time-averaged mean squared displacement (TAMSD)
satisfies the conditions of a wavelet
The wavelet transform with above expression yields \[ d_{j,k} = \int_{-\infty}^\infty x(t) \frac{1}{\sqrt{2^j}} (\delta(2^{-j}t-k) - \delta(2^{-j}t-k-\tau)) \mathrm{d}t \] \[ =\frac{1}{\sqrt{2^j}} [x(2^{j}k) - x(2^{j}(k+\tau))] \] The corresponding scaling function is \[ F_j = \frac{1}{2^jK}\sum_{k=0}^K [x(2^{j}k) - x(2^{j}(k+\tau))]^2 \] which is the same as the TAMSD
The wavelet transform can be used as a filter
Detrended fluctuation analysis [Peng et al. (1994)]:
where p is a polynomial of order q
DFA0 corresponds to the TA MSD with a specific averaging
Larger q lead to filtering out slow trends in the signal
The following measures can express equivalent information as the autocorrelation function, however, they emphasis on different properties of the signal